## Предисловие

Данное пособие Г.Л. Маршановой хорошо известно школьникам, изучающим химию, школьным учителям химии, абитуриентам, преподавателям колледжей и вузов под названием «500 задач по химии + 200 задач».

Автор посчитала целесообразным сохранить в настоящем издании задачи, которые предлагались на вступительных экзаменах в разные вузы г. Москвы еще до введения экзамена по химии в формате ЕГЭ. Думается, что это оправданный шаг, ведь пособие многие годы используется учащимися и учителями как хороший тренажер при подготовке к разным этапам (начиная со школьного и межшкольного) Всероссийской олимпиады по химии. Кроме этого, задачи, представленные в данном сборнике, по содержанию и степени сложности вполне соответствуют расчетным задачам, предлагаемым на Едином государственном экзамене по химии и экзамене по химии в формате ОГЭ. Иными словами, школьный учитель без труда подберет для своих учеников соответствующее задание, формирующее и развивающее умения и навыки решения расчетных задач, как в качестве традиционного (в том числе и дифференцированного) домашнего задания, так и для факультативных и элективных курсов и подготовки к сдаче экзамена по химии в 9 и 11 классах.

Автор выражает признательность всем учителям и учащимся, высказавшим свои замечания и предложения, которые были учтены при подготовке данного издания.

### Памятка для учащегося

# Физические величины, используемые при решении задач

| Наименование<br>величин                                     | Единицы<br>измерения                           | Обозна-<br>чение | Форма записи                                                       |
|-------------------------------------------------------------|------------------------------------------------|------------------|--------------------------------------------------------------------|
| Количество<br>вещества                                      | моль                                           | v (ню)*          | $v(H_2S) = 1,6$ моль                                               |
| Масса вещества                                              | мг, г, кг                                      | m                | m(CaO) = 60 кг                                                     |
| Молярная масса                                              | г/моль,<br>кг/моль                             | M                | $M({ m CO}_2) = 44\ { m г/моль}$ $M({ m Ca}) = 0.04\ { m кг/моль}$ |
| Молярный объем                                              | л/моль,<br>м <sup>3</sup> /моль                | $V_{ m m}$       | $V_{ m m}$ = 22,4 л/моль = = 22,4 · $10^{-3}$ м $^3$ /моль         |
| Объем вещества,<br>раствора                                 | л, м <sup>3</sup> , мл                         | V                | $V(H_2) = 10 \pi$<br>$V(HCl) = 0,2 \text{ м}^3$                    |
| Плотность ве-<br>щества, раствора                           | г/мл, г/см <sup>3</sup> ,<br>кг/м <sup>3</sup> | ρ (po)           | $ ho(H_2O) = 1 \text{ г/мл}$<br>$ ho(KOH) = 1062 \text{ кг/м}^3$   |
| Относительная плотность                                     | Безразмер-<br>ная                              | D                | $D_{ m H_2}$ = 22                                                  |
| Относительная<br>атомная масса                              | Безразмер-<br>ная                              | $A_{ m r}$       | $A_{r}(Ca) = 40$ $A_{r}(C) = 12$                                   |
| Относительная молекулярная масса                            | Безразмер-<br>ная                              | $M_{ m r}$       | $M_{\rm r}({ m CaO}) = 56$<br>$M_{\rm r}({ m O}_2) = 32$           |
| Массовая доля растворенного вещества, элемента в соединении | Безразмер-<br>ная или в %                      | ω (омега)        | ω(KOH) = 0,45<br>ω(C) = 80%                                        |
| Выход вещества                                              | Безразмер-<br>ная или в %                      | η (эта)          | $\eta(\mathrm{NH_3}) = 25\%$                                       |
| Объемная доля газа в смеси                                  | Безразмер-<br>ная или в %                      | ф (фи)           | φ(CH <sub>4</sub> ) = 0,98<br>или 98%                              |

<sup>\*</sup> В системе СИ количество вещества обозначается латинской буквой n (эн). В школьной практике распространено обозначение греческой буквой v (ню).

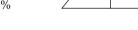
#### Физические константы, используемые при решении задач

| Абсолютный нуль<br>температуры –273 °C                            | Постоянная Авогадро $6.02 \cdot 10^{23}$ моль <sup>-1</sup>                                                                    |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Нормальная атмосфера<br>760 мм рт. ст.,                           | Универсальная газовая постоянная $8,31~\rm{Дж\cdot моль}^{-1}\cdot K^{-1}$                                                     |
| или 101 325 Па                                                    | или $0.082$ л $\cdot$ атм $\cdot$ моль $^{-1}$ $\cdot$ град $^{-1}$                                                            |
| Постоянная Фарадея 9,65 · 10 <sup>4</sup> Кл · моль <sup>-1</sup> | Стандартный молярный объем идеального газа при н. у. (0 °C, 1 атм) 22,4 · 10 <sup>-3</sup> м <sup>3</sup> · моль <sup>-1</sup> |

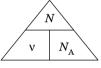
#### Общие формулы для решения задач по химии

#### Количество вещества. Молярная масса. Число Авогадро

 $M_{\rm r} = \sum n \cdot A_{\rm r}$ , где n — число атомов в молекуле (индекс)


M численно равна  $M_{\pi}$ 

 $[M] = \Gamma/\text{моль или } \kappa \Gamma/\text{моль}$ 


V – количество вещества

[v] = моль

$$\omega(\vartheta) = \frac{n \cdot A_{\rm r}(\vartheta)}{M_{\rm r}} \cdot 100\%$$



M



N — число структурных частиц  $N_{\Delta} = 6.02 \cdot 10^{23} \text{ моль}^{-1}$ 

#### Газы: законы, правила, константы

 $V_{\rm m} = 22,4$  л/моль = 0,0224 м<sup>3</sup>/моль (н. у.)

 $M_{\rm r}^{\rm in}({\rm rasa}) = M_{\rm r}({\rm H}_2) \cdot D_{{\rm H}_2} = 2 \cdot D_{{\rm H}_2}$ 

 $M_r^1$ (газа) =  $M_r^1$ (возд.) · D(возд.) =  $29 \cdot D$ (возд.)

M(газа) =  $V_{\rm m}$   $\cdot$   $\rho$ (газа) = 22,4 л/моль  $\cdot$   $\rho$  (г/л) (в расчете на н. у.)

D – относительная плотность газов

 $1 \text{ m}^3 = 1000 \text{ л}$ 

 $1 \pi = 1000 \text{ мл}$ 





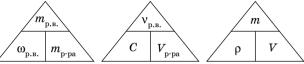


| Правило объемных                                                                              | Уравнение Менделеева –                         |
|-----------------------------------------------------------------------------------------------|------------------------------------------------|
| отношений газов                                                                               | Клапейрона                                     |
| $\frac{V_1}{V_2} = \frac{v_1}{v_2}$                                                           | $PV = \frac{m}{M}RT$                           |
| $egin{aligned} \mathcal{B}$ акон Бойля — Мариотта $rac{P}{P_1} = rac{V_1}{V} \end{aligned}$ | $3$ акон Шарля $\frac{P}{T} = \frac{P_1}{T_1}$ |

# $egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egin{aligned} egin{aligned} egin{aligned} eg$

 $R = 8.31 \, \text{Дж} / \text{(моль} \cdot \text{K)} = 0.082 \, \text{л} \cdot \text{атм} / \text{(моль} \cdot \text{K)}$ 

#### Растворы


 $\rho(H_2O) = 1000 \text{ кг/м}^3 = 1 \text{ г/мл} = 1 \text{ г/см}^3$ 

С – молярная концентрация

 $[C] = \text{моль}/\pi$ 

V – количество вещества

[v] = моль



#### Разбавление

ω<sub>р.в.</sub> ↓

 $m_{ ext{p.B.}} = ext{const}$   $m_{ ext{p-pa(2)}} = m_{ ext{p-pa(1)}} + m( ext{H}_2 ext{O})_{ ext{добавл.}}$ 

#### Упаривание

 $m_{\text{p.b.}} = \text{const}$   $m_{\text{p-pa(2)}} = m_{\text{p-pa(1)}} - m(\text{H}_2\text{O})_{\text{выпар.}}$   $\omega_{\text{p.b.}} \uparrow$ 

#### Выход продукта реакции

 $\eta = 100\% - \%$  потерь = 1 – доля потерь







#### Смеси и примеси

 $\omega_{_{^{\mathrm{q.B.}}}}=100\%-\%$  примесей = 1- доля примесей  $\phi_{_{^{\mathrm{q.B.}}}}=100\%-\%$  примесей = 1- доля примесей









# РЕШЕНИЕ ТИПОВЫХ ЗАДАЧ

## I. Вычисления по химическим формулам

*Химическая формула* — это условная запись состава вещества посредством химических знаков и индексов.

Задача № 1. Вычислите относительную молекулярную массу метана  $\mathrm{CH}_4$  и отношение масс (массовое отношение) элементов в этом веществе.

Дано: 
$$\frac{\text{CH}_4}{M_{\text{r}}(\text{CH}_4) = ?}$$
 
$$\frac{M_{\text{r}}(\text{CH}_4) = A_{\text{r}}(\text{C}) + 4 \cdot A_{\text{r}}(\text{H}).}{M_{\text{r}}(\text{CH}_4) = 12 + 4 \cdot 1 = 12 + 4 = 16.}$$
 
$$2) \ m(\text{C}) : m(\text{H}) = A_{\text{r}}(\text{C}) : 4 \cdot A_{\text{r}}(\text{H});$$
 
$$m(\text{C}) : m(\text{H}) = 12 : 4;$$
 
$$m(\text{C}) : m(\text{H}) = 3 : 1.$$

Ответ:  $M_r(CH_4) = 16$ ; m(C) : m(H) = 3 : 1.

**Задача № 2.** Вычислите массовые доли (в %) элементов в глюкозе  $\mathrm{C_6H_{12}O_6}$ .

| Дано:                          | Решение:                                                                                                                                                          |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $C_6H_{12}O_6$                 | Для вычисления массовой доли хими-                                                                                                                                |
| ω(C) = ? $ω(H) = ?$ $ω(O) = ?$ | ческого элемента в сложном веществе применим формулу $\omega(\mathfrak{d}) = \frac{n \cdot A_{\rm r}(\mathfrak{d})}{M_{\rm r}} \cdot 100\%,$ где $n$ – число ато- |
|                                | мов элемента в молекуле (индекс).                                                                                                                                 |

1) Вычислим относительную молекулярную массу глюкозы:

$$\begin{split} &M_{\rm r}({\rm C_6H_{12}O_6}) = 6 \cdot A_{\rm r}({\rm C}) + 12 \cdot A_{\rm r}({\rm H}) + 6 \cdot A_{\rm r}({\rm O}); \\ &M_{\rm r}({\rm C_6H_{12}O_6}) = 6 \cdot 12 + 12 \cdot 1 + 6 \cdot 16 = 72 + 12 + 96 = 180. \end{split}$$

2) Вычислим массовые доли углерода, водорода и кислорода в глюкозе:

$$\omega(C) = \frac{6 \cdot 12}{180} = 0,4$$
, или 40,0%;

$$\omega(H) = \frac{12 \cdot 1}{180} = 0,067$$
, или 6,7%;

$$\omega(O) = \frac{6 \cdot 16}{180} = 0,533$$
, или 53,3%.

OTBET: 
$$\omega(C) = 40.0\%$$
,  $\omega(H) = 6.7\%$ ,  $\omega(O) = 53.3\%$ .

**Задача № 3.** Вычислите, какая масса углерода содержится в образце этана С<sub>2</sub>Н<sub>6</sub> массой 90 г.

Дано:  
$$m(C_2H_6) = 90$$
 гРешение:  
1)  $M_r(C_2H_6) = 2 \cdot A_r(C) + 6 \cdot A_r(H)$ ;  
 $M_r(C_2H_6) = 2 \cdot 12 + 6 \cdot 1 = 30$ .

Известно, что числовые значения относительной молекулярной и молярной масс равны. Следовательно,  $M(\mathrm{C_2H_6}) = 30$  г/моль. Значит, в 30 г этана на долю углерода приходится 24 г, а на долю водорода -6 г.

2) Если в 30 г этана содержится 24 г углерода, то тогда в 90 г этана содержится x г углерода. Составим пропорцию и решим ее:

$$\frac{30 \; \Gamma}{24 \; \Gamma} = \frac{90 \; \Gamma}{x \; \Gamma}$$
, отсюда  $x = 72$ ;  $m(C) = 72 \; \Gamma$ .

Ответ: m(C) = 72 г.

**Задача № 4.** Вычислите, в какой массе оксида фосфора (III)  $P_2O_3$  содержится 6,2 г фосфора.

Дано: 
$$P_2O_3$$
  $M_r(P_2O_3) = 2 \cdot A_r(P) + 3 \cdot A_r(O);$   $M_r(P_2O_3) = 2 \cdot 31 + 3 \cdot 16 = 110.$  Известно, что числовые значения относительной молекулярной и молярной масс равны.

Следовательно,  $M(P_2O_3)=110\ r/$ моль. Значит, в  $110\ r$  оксида фосфора (III) на долю фосфора приходится  $62\ r$ , а на долю кислорода  $-48\ r$ .

2) Если в 110 г  $P_2O_3$  содержится 62 г фосфора, то тогда в x г  $P_2O_3$  содержится 6,2 г фосфора. Составим пропорцию и решим ее:

$$\frac{110\ \Gamma}{62\ \Gamma} = \frac{x\ \Gamma}{6,2\ \Gamma}$$
, отсюда  $x = 11;\ m({\rm P_2O_3}) = 11\ \Gamma.$ 

$$O$$
 т в е т:  $m(P_{2}O_{3}) = 11$  г.

# II. Задачи на вывод химических формул

Задача № 5. Определите химическую формулу вещества, в состав которого входят 5 массовых частей кальпия и 3 массовые части углерода.

Дано: Ca<sub>v</sub>C<sub>v</sub>

Решение:

m(Ca): m(C) = 5:3 Для установления химической формулы вещества необходимо определить значения индексов.

 $Ca_{x}C_{y}$ , где x, y – индексы. Тогда m(Ca) = 40x, m(C) = 12y, где 40 и 12 — относительные атомные массы кальция и углерода соответственно.

На основе закона постоянства состава вещества можем записать:

$$40x: 12y = 5: 3,$$
 отсюда  $x: y = \frac{5}{40}: \frac{3}{12};$   $x: y = 0,125: 0,25;$   $x: y = 1: 2;$   $x = 1, y = 2.$ 

Следовательно, формула вещества СаС<sub>2</sub>.

Ответ: СаС<sub>2</sub>.

Задача № 6. Определите молекулярную формулу вещества, если известно, что массовая доля углерода в нем равна 40,0% водорода -6,67%, кислорода -53,33%. Плотность паров этого вещества по углекислому газу равна 1,364.

Дано:  $\omega(C) = 40.0\%$  $\omega(H) = 6.67\%$  $\omega(O) = 53,33\%$  $D_{\text{CO}_2} = 1,364$  $C_{x}H_{v}O_{z}$ 

Решение:

1) Для установления химической формулы вещества необходимо определить значения индексов.

 $C_xH_vO_z$ , где x, y, z — индексы. Тогда m(C) = 12x, m(H) = 1y, m(O) = 16z, где 12, 1, 16 – относительные атомные массы углерода, водорода и кислорода соответственно.

2) Установим простейшую формулу вещества и вычислим для нее относительную молекулярную массу.

На основе закона постоянства состава вещества можем записать:

$$12x:1y:16z=40,0:6,67:53,33,$$
 отсюда  $x:y:z=\frac{40,00}{12}:\frac{6,67}{1}:\frac{53,33}{16};$ 

x:y:z=3,33:6,67:3,33;

x:y:z=1:2:1.

Следовательно, простейшая формула  ${
m CH_2O}$ .  $M_r({
m CH_2O}) = 30$ .

3) Вычислим значение относительной молекулярной массы искомого вещества по формуле:

$$M_{\rm r}$$
(истин.) =  $M_{\rm r}$ (CO $_2$ ) ·  $D_{{
m CO}_2}$ ;  $M_{\rm r}$ (истин.) =  $44 \cdot 1,364 = 60$ .

4) Сравним значения относительных молекулярных масс – истинной и определенной, по простейшей формуле:

$$\frac{M_{\rm r}({\rm истин.})}{M_{\rm r}({\rm CH_2O})} = \frac{60}{30} = 2.$$

Значит, индексы в истинной формуле будут в 2 раза больше, чем в простейшей формуле, то есть  $x=2,\ y=4,$  z=2. Следовательно, формула искомого вещества  $\mathrm{C_2H_4O_2}.$  О т в е т:  $\mathrm{C_2H_4O_2}.$ 

Задача № 7. При сгорании 10,5 г органического вещества получили 16,8 л углекислого газа (н. у.) и 13,5 г воды. Плотность этого вещества при н. у. равна 1,875 г/л. Определите молекулярную формулу вещества.

$$\mu$$
 ано: 
$$m(C_x H_y O_z) = 10.5 \ \Gamma$$
  $\nu(CO_2) = 16.8 \ \pi$  
$$m(H_2 O) = 13.5 \ \Gamma$$
  $\rho(C_x H_y O_z) = 1.875 \ \Gamma/\pi$   $\Gamma$ 

Решение:

Для установления химической формулы вещества необходимо определить значения индексов.  $C_x H_y O_z$ , где x, y, z — индексы. Тогда m(C) = 12x, m(H) = 1y, m(O) = 16z, где 12, 1, 16 — относительные атомные массы углерода, водорода и кислорода соответственно.

1) Образование углекислого газа при горении указывает на наличие в исходном веществе атомов углерода. Вычислим массу углерода в исходном образце, для чего составим схему:

2) Образование воды при горении указывает на наличие в исходном веществе атомов водорода. Вычислим массу водорода в исходном образце, для чего составим схему:

$${}^{m_{\Gamma}}_{2_{\Gamma}} \rightarrow {}^{13,5_{\Gamma}}_{18_{\Gamma}} \Rightarrow m(H) = \frac{2_{\Gamma} \cdot 13,5_{\Gamma}}{18_{\Gamma}} = 1,5_{\Gamma}.$$

3) Определим, содержало ли сгоревшее вещество в своем составе кислород. Вычислим сумму масс углерода и водорода в исходном образце:

$$m(C + H) = 9 \Gamma + 1.5 \Gamma = 10.5 \Gamma.$$

Как видим, полученный результат совпадает с массой исходного образца сгоревшего вещества. Следовательно, в составе вещества кислорода не было, сгорел углеводород  $(C_vH_v)$ .

4) Установим простейшую формулу углеводорода и вычислим для нее относительную молекулярную массу.

На основании закона постоянства состава можем записать:

12x:1y=9:1,5, где 12 и 1 — относительные атомные массы углерода и водорода соответственно.

Отсюда x:y=1:2.

Следовательно, простейшая формула  $CH_2$ ;  $M_r(CH_2) = 14$ .

5) Вычислим молярную массу искомого углеводорода по формуле:

$$M(C_xH_y) = V_m \cdot \rho;$$
  
 $M(C_xH_y) = 22.4 \text{ л/моль} \cdot 1.875 \text{ г/л} = 42 \text{ г/моль}.$ 

6) Сравним значения относительных молекулярных масс – истинной и определенной, по простейшей формуле.

Как известно, числовые значения молярной и относительной молекулярной масс совпадают. Следовательно,  $M_r(\mathbf{C_xH_v}) = 42$ .

$$\frac{M_{\rm r}({\rm C_xH_y})}{M_{\rm r}({\rm CH_2})} = \frac{42}{14} = 3.$$

Значит, индексы в истинной формуле будут в 3 раза больше, чем в простейшей формуле, то есть  $x=3,\ y=6.$  Следовательно, формула вещества  $\mathrm{C_3H_6}.$ 

Ответ:  $C_3H_6$ .

Задача № 8. В органическом веществе массовые доли углерода и водорода соответственно равны 81,82% и 18,18%. Относительная плотность этого вещества по водороду равна 22. Определите молекулярную формулу неизвестного вещества.

 $\upmu$  а н о:  $\omega(\text{C}) = 81,82\%, \\ \text{или 0,8182} \\ \omega(\text{H}) = 18,18\%, \\ \text{или 0,1818} \\ D_{\text{H}_2} = 22 \\ \hline{\text{C}_{_{\text{X}}}\text{H}_{_{\text{y}}}\text{O}_{_{\text{Z}}}}$ 

Решение:

 $\omega(C)=81,82\%,$  Для установления химической формулы вещества необходимо определить значе-  $\omega(H)=18,18\%,$  ния индексов.

1) Установим, содержало ли искомое вещество кислород. Найдем сумму массовых долей углерода и водорода: 81,82% + 18,18% = 100%. Следовательно, искомое вещество – углеводород.

 $\mathbf{C}_{\mathbf{x}}\mathbf{H}_{\mathbf{y}}$  – где x и y – индексы.

2) Основываясь на общей формуле для расчета массовой доли химического элемента в сложном веществе  $\omega(\mathfrak{d}) = \frac{n \cdot A_{\mathrm{r}}(\mathfrak{d})}{M_{\mathrm{r}}} \cdot 100\%$  (где n — индекс), составим формулы

для расчета массовых долей углерода и водорода:

$$\omega(\mathbf{C}) = \frac{x \cdot A_{\mathrm{r}}(\mathbf{C})}{M_{\mathrm{r}}(\mathbf{C}_{\mathrm{x}}\mathbf{H}_{\mathrm{y}})}$$
 и  $\omega(\mathbf{H}) = \frac{y \cdot A_{\mathrm{r}}(\mathbf{H})}{M_{\mathrm{r}}(\mathbf{C}_{\mathrm{x}}\mathbf{H}_{\mathrm{y}})}$ , из которых выра-

зим *x* и *y*:

$$x = \frac{\omega(C) \cdot M_{\rm r}(C_{\rm x}H_{\rm y})}{A_{\rm r}(C)}; \tag{1}$$

$$y = \frac{\omega(H) \cdot M_r(C_x H_y)}{A_r(H)}.$$
 (2)

Зная относительную плотность искомого вещества по водороду, можем записать:

$$M_{\rm r}(C_{\rm x}H_{\rm y}) = M_{\rm r}(H_2) \cdot D_{\rm H_2}.$$
 (3)

Подставим формулу (3) в формулы (1) и (2). Получим:

$$x = \frac{\omega(C) \cdot M_{r}(H_{2}) \cdot D_{H_{2}}}{A_{r}(C)}; y = \frac{\omega(H) \cdot M_{r}(H_{2}) \cdot D_{H_{2}}}{A_{r}(H)}.$$

Сделаем соответствующие расчеты и определим значения индексов:

$$x = \frac{0.8182 \cdot 2 \cdot 22}{12} = 3; y = \frac{0.1818 \cdot 2 \cdot 22}{1} = 8.$$

Следовательно, формула вещества  $C_3H_8$ . О т в е т:  $C_3H_8$ .

# III. Вычисления с использованием понятия «число Авогадро»

**Задача № 9.** Вычислите, сколько молекул содержится в 36 г воды. В каком объеме метана  $\mathrm{CH}_4$  (н. у.) столько же молекул?

Дано: 
$$m(\mathrm{H}_2\mathrm{O}) = 36\ \mathrm{r}$$
 
$$N_\mathrm{A} = 6,02 \cdot 10^{23}\ \mathrm{моль}^{-1}$$
 Вычислим количество молекул воды в  $36\ \mathrm{r}$ , для чего воспользуемся формулами: 
$$V_\mathrm{m} = 22,4\ \mathrm{л/моль}$$
 
$$V_\mathrm{m} = 22,4\ \mathrm{л/моль}$$
 
$$N(\mathrm{H}_2\mathrm{O}) = ?$$
 
$$V(\mathrm{CH}_4) = ?$$
 
$$N(\mathrm{H}_2\mathrm{O}) = 6,02 \cdot 10^{23}\ \mathrm{моль}^{-1} \times \times \frac{36\ \mathrm{r}}{18\ \mathrm{r/моль}} = 12,04 \cdot 10^{23}\ \mathrm{(моле-кул)}.$$

2) Вычислим искомый объем метана.

По условию задачи  $N({\rm H_2O}) = N({\rm CH_4}) = 12,04 \cdot 10^{23}$  молекул.

$$V = V_{\mathrm{m}} \cdot \nu; \nu = \frac{N}{N_{\mathrm{A}}} \Rightarrow V = V_{\mathrm{m}} \cdot \frac{N}{N_{\mathrm{A}}};$$
  $V(\mathrm{CH_4}) = 22.4 \ \mathrm{\pi/моль} \cdot \frac{12.04 \cdot 10^{23}}{6.02 \cdot 10^{23} \ \mathrm{моль}^{-1}} = 44.8 \ \mathrm{\pi}.$ 

Ответ:  $N(\text{H}_2\text{O}) = 12,04 \cdot 10^{23}$  молекул,  $V(\text{CH}_4) = 44,8$  л.

Задача № 10. На одну чашку весов лаборант положил порцию меди, содержащую  $42,14 \cdot 10^{23}$  атомов. Какое количество вещества железа лаборант должен положить на другую чашку весов, чтобы весы были в состоянии равновесия?

$$m = M \cdot v; v = \frac{N}{N_{\rm A}} \Rightarrow m = M \cdot \frac{N}{N_{\rm A}};$$
 $m({\rm Cu}) = 64 \text{ г/моль} \cdot \frac{42.14 \cdot 10^{23}}{6.02 \cdot 10^{23} \text{ моль}^{-1}} = 448 \text{ г.}$ 

2) Вычислим искомое количество вещества железа. Исходя из условия задачи, можем записать:

$$m(\text{Fe}) = m(\text{Cu}) = 448 \text{ r.}$$

$$v = \frac{m}{M}$$
,  $v(\text{Fe}) = \frac{448 \text{ r}}{56 \text{ г/моль}} = 8 \text{ моль}$ .

Oтвет: v(Fe) = 8 моль.

## IV. Вычисления по химическим уравнениям с использованием понятия «молярная масса»

Xимическое уравнение (уравнение химической реакции, УХР) — это условная запись химической реакции посредством химических знаков, химических формул и коэффициентов.

Задача № 11. По уравнению реакции  $2H_2O = 2H_2 + O_2$  вычислите, какую массу кислорода можно получить при полном разложении воды массой 9 г.

| Дано:                             | Решение:                                |
|-----------------------------------|-----------------------------------------|
| УХР                               | Для вычисления массы кислорода восполь- |
| $m(\mathrm{H_2O}) = 9~\mathrm{r}$ | зуемся формулой $m=M\cdot v$ .          |
| (0)                               | Количество вещества кислорода можно     |
| $m(O_2) = ?$                      | вычислить по уравнению химической ре-   |
|                                   | акции через количество вещества волы.   |

Запишем уравнение реакции, подчеркнем формулы интересующих нас веществ и определим их молярное отношение:

$$\frac{2H_{2}O}{2\text{ моль}} = 2H_{2} + \frac{O_{2}}{1\text{ моль}}$$

Из уравнения реакции следует, что молярное отношение кислорода и воды равно 1:2 (количество вещества кислорода в 2 раза меньше количества вещества воды), значит, можем записать:  $\nu(O_2) = 0.5\nu(H_2O)$ .

Вычислим количество вещества воды по формуле  $v = \frac{m}{M}$ :

$$v({\rm H_2O}) = \frac{9\,{\rm f}}{18\,{\rm f/моль}} = 0.5\,{\rm моль}.$$
 Следовательно,  $v({\rm O_2}) = 0.5\cdot 0.5\,{\rm моль} = 0.25\,{\rm моль};$   $m({\rm O_2}) = 32\,{\rm f/моль}\cdot 0.25\,{\rm моль} = 8\,{\rm f}.$  Ответ:  $m({\rm O_2}) = 8\,{\rm f}.$ 

# V. Вычисления по химическим уравнениям с использованием понятия «молярный объем»

Задача № 12. По уравнению реакции  $2H_2O = 2H_2 + O_2$  вычислите, какой объем (в пересчете на н. у.) кислорода можно получить при полном разложении воды массой  $27~\mathrm{r}$ .

Дано:
 УХР

 
$$m(H_2O) = 27 \text{ г}$$
 Для вычисли рода воспол  $V = V_m \cdot v$ .

  $V(O_2) = ?$ 
 Количество иможно вычи химической

Для вычисления объема кислорода воспользуемся формулой  $V = V_{\infty} \cdot v$ .

Количество вещества кислорода можно вычислить по уравнению химической реакции через количество вещества воды.

Запишем уравнение реакции, подчеркнем формулы интересующих нас веществ и определим их молярное отношение:

$$\frac{2H_{2}O}{2 \text{ моль}} = 2H_{2} + \frac{O_{2}}{1 \text{ моль}}$$

Из уравнения химической реакции следует, что молярное отношение воды и кислорода равно 2:1 (количество вещества кислорода в 2 раза меньше количества вещества воды), значит, можем записать:  $v(O_2) = 0.5v(H_2O)$ .

Вычислим количество вещества воды по формуле  $v = \frac{m}{M};$   $v(H_2O) = \frac{27 \, \text{г}}{18 \, \text{г/моль}} = 1,5 \, \text{моль}.$ 

Следовательно,  $v(O_2)=0.5\cdot 1.5$  моль = 0,75 моль;  $V(O_2)=22$  л/моль  $\cdot$  0,75 моль = 16,8 л. О т в е т:  $V(O_2)=16.8$  л.

# VI. Вычисления с использованием понятия «массовая доля растворенного вещества»

Задача № 13. Вычислите, какой объем (н. у.) водорода выделится при взаимодействии 0,2 м³ 10-процентной соляной кислоты (плотность 1047 кг/м³) с достаточным количеством магния.

Дано: 
$$V_{\text{p-pa}}(\text{HCl}) = 0,2 \text{ м}^3 \\ \omega(\text{HCl}) = 10\% \\ \rho_{\text{p-pa}}(\text{HCl}) = 1047 \text{ кг/м}^3 \\ \hline V(\text{H}_2) = ?$$
 
$$P \text{ е ш е н и е:} \\ \text{Для нахождения объема водорода воспользуемся формулой } V = V_{\text{m}} \cdot \text{v.} \\ \text{Составим уравнение реакции:} \\ 2\text{HCl} + \text{Mg} = \text{MgCl}_2 + \text{H}_2 \uparrow \text{.} \\ \text{2 моль} \\ \text{1 моль}$$

Из уравнения реакции следует, что молярное отношение водорода и хлороводорода, содержащегося в растворе соляной кислоты, равно 1:2, то есть  $v(H_2) = 0.5v(HCl)$ .

Вычислим количество вещества хлороводорода, содержащегося в растворе соляной кислоты:

$$\begin{split} \mathbf{v} &= \frac{m}{M}; \ m_{_{\mathrm{p.B.}}} = \frac{\omega_{_{\mathrm{p.B.}}} \cdot m_{_{\mathrm{p-pa}}}}{100\%}; \\ m_{_{\mathrm{p-pa}}} &= V_{_{\mathrm{p-pa}}} \cdot \rho_{_{\mathrm{p-pa}}} \Rightarrow \mathbf{v}_{_{\mathrm{p.B.}}} = \frac{\omega_{_{\mathrm{p.B.}}} \cdot V_{_{\mathrm{p-pa}}} \cdot \rho_{_{\mathrm{p-pa}}}}{M \cdot 100\%}; \\ \mathbf{v}(\mathrm{HCl}) &= \frac{10\% \cdot 0.2 \ \mathrm{m}^3 \cdot 1047 \ \mathrm{kr/m}^3}{0.0365 \ \mathrm{kr/моль} \cdot 100\%} \approx 573.7 \ \mathrm{моль}. \end{split}$$

Таким образом,  $v(H_2) = 573,7$  моль  $\cdot$  0,5 = 286,85 моль;  $V(H_2) = 0,0224$  м $^3/$ моль  $\cdot$  286,85 моль = 6,43 м $^3$ .

Примечание. Если на стадии составления краткой записи условия задачи («Дано») представить ω(HCl) в долях как 0,1, то конечная формула для расчета количества вещества хлороводорода, содержащегося в растворе соляной кислоты, будет иметь вид:

$$V_{\text{p.b.}} = \frac{\omega_{\text{p.b.}} \cdot V_{\text{p-pa}} \cdot \rho_{\text{p-pa}}}{M}$$
.

Все остальные расчеты - без изменения.

Ответ:  $V(H_2) = 6,43 \text{ м}^3$ .

Задача № 14. Вычислите, какой объем воды (в л) потребуется для разбавления 200 мл 96-процентного

# Конец ознакомительного фрагмента. Приобрести книгу можно в интернет-магазине «Электронный универс» e-Univers.ru