ОГЛАВЛЕНИЕ

1. ОБЩИЕ СВЕДЕНИЯ	5
1.1. Рабочее пространство AutoCAD	6
1.2. Работа с командами AutoCAD	
1.3. Управление видовым изображением на экране	10
1.4. Способы задания точек	
2. СРЕДСТВА НАСТРОЙКИ РАБОЧЕЙ СРЕДЫ	12
2.1. Границы чертежа	
2.2. Режимы рисования	12
2.3. Слои	14
3. ГРАФИЧЕСКИЕ ОБЪЕКТЫ, ПРИМИТИВЫ И ИХ АТРИБУТЫ	17
3.1. Создание основных сложных объектов	
3.2. Стили геометрических объектов.	
4. РЕДАКТИРОВАНИЕ ОБЪЕКТОВ НА ЧЕРТЕЖЕ	23
5. СРЕДСТВА ПОЛУЧЕНИЯ СБОРОЧНОГО ЧЕРТЕЖА	31
5.1. Создание блока	
5.2. Вставка блока	
5.3. Редактирование блока	36
5.4. Атрибуты блока	
СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ	39

1. ОБЩИЕ СВЕДЕНИЯ

Компьютерная графика (машинная графика) — это наука, занимающаяся изучением методов и средств визуализации реальных данных путем создания, обработки, хранения, воспроизведения и вывода на печать графических изображений (рисунков, чертежей и т.п.) с помощью программно-аппаратных вычислительных комплексов.

По способам задания изображений графику можно разделить на:

- двумерную графику (2D-изображения) в виде плоских картинок, проекций;
- трёхмерную графику (3D-изображения) в виде объемных трехмерных объектов.

Способы хранения графической информации отображены на рис. 1.1, методы работы — на рис. 1.2.



Рис. 1.1. Способы хранения графической информации

Рис. 1.2. Методы работы с графической информацией

Запуск программы — двойной щелчок мыши по ярлыку AutoCAD. В результате появляется «картинка», которая называется *рабочее пространство* или *интерфейс*. В AutoCAD существует три стандартных *интерфейса*: рисование и аннотации, основы 3D, 3D-моделирование.

Для смены рабочего пространства используется кнопка (прасположенная в правом нижнем углу рабочего окна программы. При нажатии левой кнопкой мыши (далее лкм) на данную кнопку в программе AutoCAD появляется возможность переключиться на другое рабочее пространство (рисунок 1.3). Для этого нужно щелкнуть лкм по его названию или использовать опцию < параметры рабочего пространства > (так называется одноименное диалоговое окно, в котором можно настроить отображение рабочих пространств).

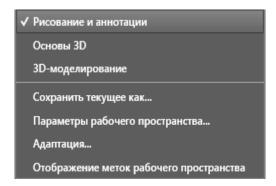


Рис. 1.3. Переключатель рабочих пространств

1.1. Рабочее пространство AutoCAD

По умолчанию рабочий интерфейс — «*Рисование и аннотации*». Этот интерфейс позволяет работать с 2D чертежами и проектными документами. Стандартный вид рабочего пространства показан на рис. 1.4.

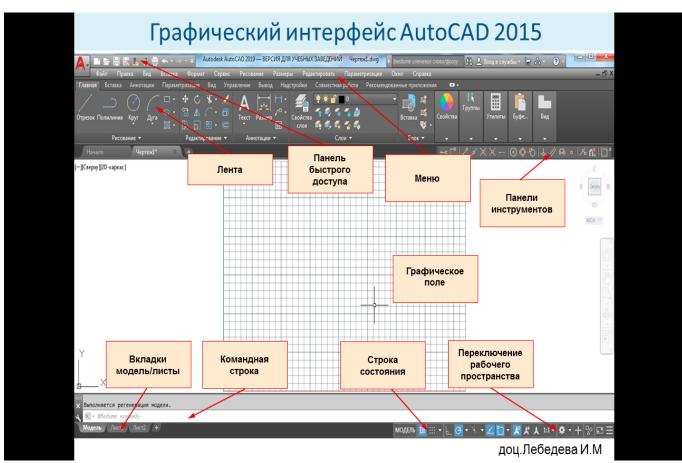


Рис. 1.4. Вид интерфейса «Рисование и аннотации»

Самая верхняя строка называется *информационной строкой* (рис. 1.5). На ней находится *панель быстрого доступа* (для доступа к часто используемым командам) и *браузер* (значок с красной буквой А), служащий для работы с файлом чертежа. Ниже находится *строка меню*, содержащая вкладки с основными группами команд (табл. 1.1).

Рис. 1.5. Информационная строка

Основные группы команд в строке меню

Файл	Работа с файлами	
Правка	Работа с частями чертежа	
Вид	Работа с изображением: масштабирование изображения, панорамирование, установка точки зрения и т.д.	
Вставка	Работа с блоками и внешними объектами, программами и т.д.	
Формат	Работа с неграфической информацией: со свойствами примитивов, стилями, установка границ чертежа и т.д.	
Сервис	Настройка рабочего пространства, установка режимов рисования и т.д.	
Рисование	Команды черчения	
Размеры	Команды простановки размеров и управления их параметрами	
Редактировать	Команды редактирования элементов чертежа	

Щелчок по вкладке приводит к появлению выпадающего меню, строки которого могут содержать выпадающее меню более низкого уровня. Щелчок по его строке активирует какую-нибудь команду. Для отображения строки меню необходимо открыть список на панели быстрого доступа (рис. 1.6, a) и выбрать <Показать строку меню> (рис. 1.6, δ).

Рис. 1.6. Информационная строка:

a — кнопка вызова списка команд; δ — команда: <Показать строку меню>

Под строкой *меню* находится полоса, называемая *лентой* и служащая компактным местом размещения операций (команд), относящихся к текущему рабочему пространству (рис. 1.7).

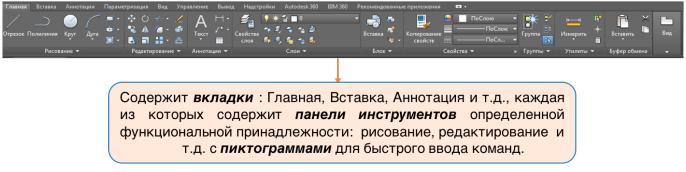


Рис. 1.7. Лента с вкладками и панелями инструментов

Лента открывается вручную: *Сервис / Палитры / Лента>* или с помощью команды: *«Лента»*, введенной в командную строку. Область, находящаяся под лентой, — *графическое поле* (пространство модели). Оно представляет собой белое, не ограниченное по размерам пространство, занимающее большую часть экрана, в котором отображается и редактируется чертеж. В нем и под ним находятся определенные элементы (табл. 1.2).

Таблица 1.2

Вкладки *Модель* и *Лист* используют для входа в пространство *<Модель / Лист*>. По умолчанию активна вкладка *Модель*

Элементы графического поля		
вкладки Модель – Лист1 – Лист2	Модель Лист1 Лист2 +	
знак системы координат	Ľ_×	
Перекрестие (прицел)	+	

Командная строка (**КС**) (рисунок 1.8) служит для ведения диалога с системой AutoCAD. В случае отсутствия *КС*, необходимо нажать <CTRL> + 9 или <Cepвис / Командная строка>. Любое действие отображается в командной строке в виде надписи. Перед выполнением новой команды в *КС* не должно быть записи, иначе следует нажать <Esc>.

В нижней части экрана находится *строка состояния* (рис. 1.10), в которой отображаются: счетчик координат, переключатели режимов, кнопка переключения пространств и *инструменты масштабирования* (рис. 1.9).

Рис. 1.8. Командная строка

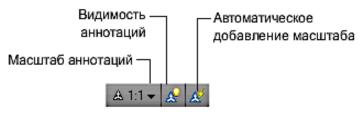


Рис. 1.9. Инструменты масштабирования

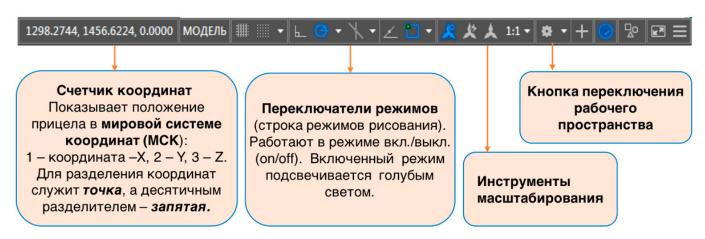


Рис. 1.10. Строка состояния

1.2. Работа с командами AutoCAD

Команда — операция, в результате которой происходит изменение чертежа или настроек AutoCAD в ответ на запрос пользователя. Команды можно подразделить по диалогу с пользователем и по функциональным задачам. В процессе работы команды могут быть разными способами активированы (рис. 1.11) и завершены (рис. 1.12), а результаты их выполнения могут быть отменены или восстановлены (рис. 1.13).

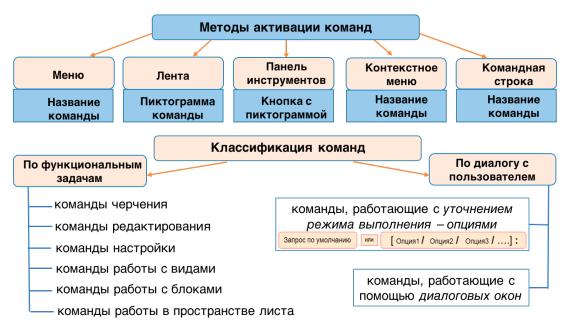


Рис. 1.11. Классификация команд и методы их активации

Рис. 1.12. Способы завершения команд

Рис. 1.13. Способы отмены и восстановления результата команд

1.3. Управление видовым изображением на экране

Вид — изображение, которое пользователь видит на экране.

В пространстве *«Модель»*, которое бесконечно, все построения даются в *натуральную величину*. Масштаб в AutoCAD определяют только при выводе чертежа на печать в пространстве *«Лист»*. Способы работы с видом приведены на рис. 1.14.

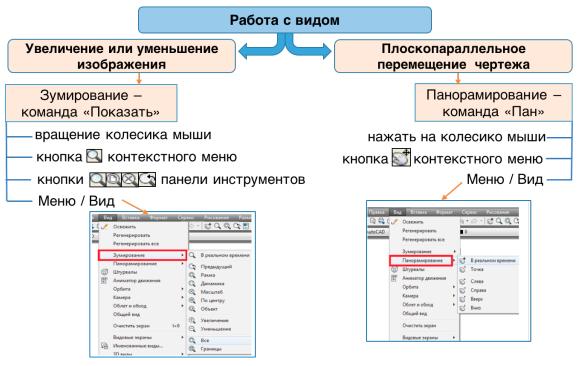


Рис. 1.14. Работа с видом

1.4. Способы задания точек

В AutoCAD в каждый момент времени действует своя декартова система координат:

- *Мировая система координат MCK* (World Coordinate System WCS) (стоит по умолчанию);
- **Пользовательская система координат ПСК** (User Coordinate System UCS) (устанавливается пользователем: <*Сервис / Новая ПСК>*).

Точки в любой системе координат можно задавать разными способами (рис. 1.15).

Рис. 1.15. Способы задания точек в AutoCAD

МСК является именованной системой координат. Ее нельзя удалить и переименовать. ПСК устанавливается для удобства создания и редактирования объектов. ПСК может быть создано столько, сколько необходимо. Точка начала координат ПСК располагается произвольно в пространстве.

Координаты точки, отсчет которых ведется от начала координат текущей системы координат, называются *абсолютными координатами*. Координаты точки, отсчет которых ведется от предыдущей точки, называются *относительными координатами* (рис. 1.16).

Координаты также делятся на: *прямоугольные*, которые могут быть заданы только с помощью координат, и *полярные*, при задании которых используется угол наклона прямой от положительного направления оси ОХ и расстояние. Угол считается положительным (+), если отсчет идет *против хода* часовой стрелки, отрицательным (-), если отсчет идет *по ходу* часовой стрелки.

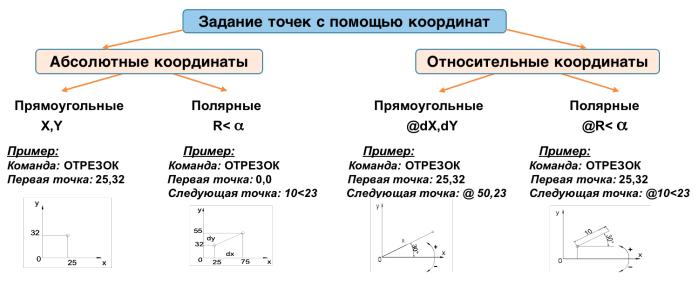


Рис. 1.16. Задание точек с помощью абсолютных и относительных координат

2. СРЕДСТВА НАСТРОЙКИ РАБОЧЕЙ СРЕДЫ

2.1. Границы чертежа

Границы чертежа — это прямоугольная область плоскости ХОУ мировой системы координат. Для задания границ чертежа используется команда: $<\Phi$ ормат / Лимиты чертежа>, позволяющая задать абсолютными координатами две угловые точки формата чертежа (левую нижнюю и правую верхнюю). По умолчанию в AutoCAD установлен формат A3 с координатами: 0,0 и 420,297, но пользователь имеет возможность установить свои границы чертежа (рис. 2.1). Чтобы увидеть на экране графическое поле, в границах чертежа нужно выполнить команду: < *Вид* / *Зумирование* / *Все*>.

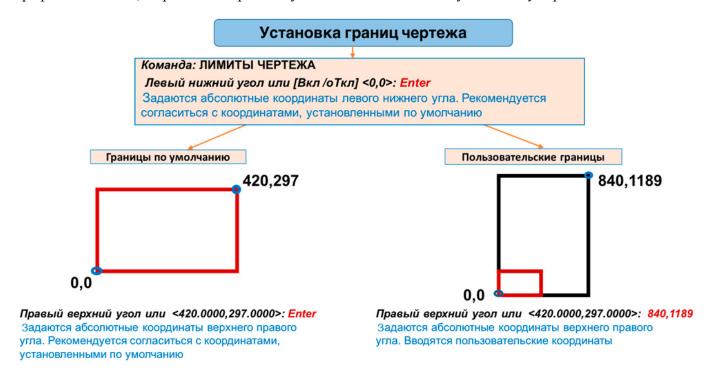


Рис. 2.1. Установка границ чертежа

2.2. Режимы рисования

Для удобства черчения в AutoCAD существует несколько элементов рабочей среды, задающих **режимы рисования**. Они находятся *в строке состояния* (рис. 2.2, *a*) и значительно облегчают процесс черчения за счет возможности «примагничиваться» графическом курсором к вспомогательным элементам — сетке, ключевым точкам (конечная, средняя, центральная и т.п.) уже построенных объектов (пиктограмма < Oбъектные привязки>), ограничивают перемещение курсора в вертикальном или горизонтальном направлениях (пиктограмма < Opmo>) и т.д. Некоторые режимы рисования не требуют настройки, а просто включаются нажатием пиктограммы в строке состояния, настройка других режимов происходит в диалоговом окне (рис. 2.2, δ), которое вызывается командой: < Cepeuc / Peжимы рисования> или через пункт < Параметры> контекстного меню в строке состояния. Включение / выключение режимов рисования может происходить тремя способами (рис. 2.3).

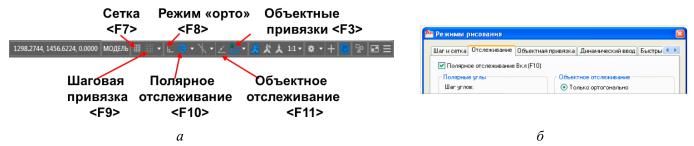


Рис. 2.2. Режимы рисования:

a — пиктограммы в строке состояния; δ — настройка в диалоговом окне

К режимам рисования, обеспечивающим точность задания точек в AutoCAD, относятся сетка, шаговая привязка, объектные привязки и режимы объектного и полярного отслеживания.

Включение/выключение режимов рисования

Кнопки строки состояния

Функциональные клавиши F...

<галочка> в диалоговом окне

Рис. 2.3. Три способа вкл. / выкл. режимов рисования

Шаговая привязка позволяет ограничить передвижение курсора узлами воображаемой решетки (он как бы «прилипает» к ним) и гарантирует точность расстояний при задании точек курсором (рис. 2.4).

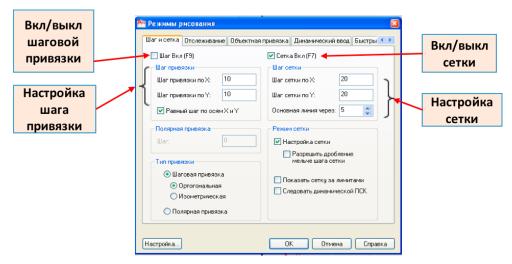


Рис. 2.4. Режимы шаговой привязки и сетки

Для возможности чертить объекты, точно привязывая их друг к другу (например, построить отрезок, начинающийся из угла уже построенного прямоугольника), в системе AutoCAD предусмотрен режим **<Объектной привязки>** — режим точного привязывания задаваемых мышью точек к характерным точкам объектов, имеющихся на чертеже. Объектные привязки работают только во время выполнения команды, при этом курсор автоматически как бы «притянется» к нужной точке.

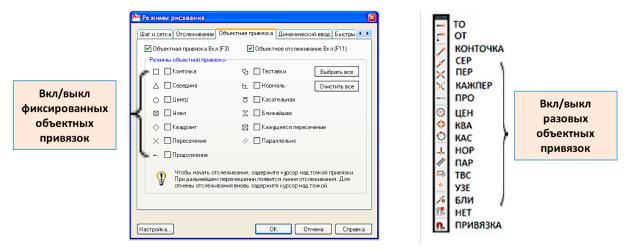


Рис. 2.5. Режимы объектной привязки: разовый и фиксированный

Объектная привязка может быть зафиксированной и разовой (рис. 2.5). В режиме зафиксированной объектной привязки поиск искомой точки происходит постоянно, разовой — только один раз

при выполнении какой-нибудь команды. Не рекомендуется включать *более трех* привязок одновременно из-за трудностей отслеживания точек.

Для возможности чертить в заданном направлении используются режимы **Фиксации направлений задания точек**. К ним относятся режимы: **орто, полярного и объектного отслеживания. Орто** ограничивает перемещение курсора параллельно осей текущей системы координат. **Полярное отслеживание** — режим, с помощью которого можно задать угол направления движения курсора относительно положительной оси ОХ. Включить или выключить режим полярного отслеживания можно с помощью функциональной клавиши **F10**> или соответствующей кнопкой в строке состояния. Настроить режим полярного отслеживания можно при помощи вкладки **Сервис / Режимы рисования / Отслеживание** (рис. 2.6). Режимы орто и полярное отслеживание не могут работать одновременно.

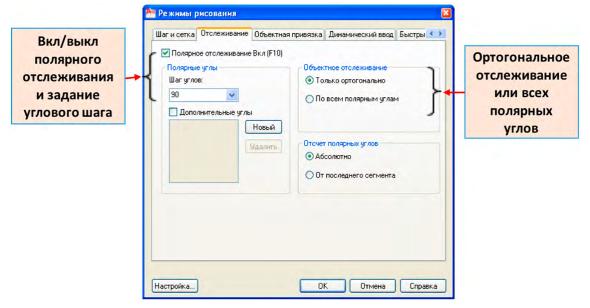


Рис. 2.6. Настройка режимов полярного и объектного отслеживания

2.3. Слои

Для смыслового разделения чертежа на элементы, для распределения по свойствам, для удобства создания и редактирования чертежа используют **слои**. Создать *слои* с определенными свойствами можно в диалоговом окне <Диспетиер свойств слоев>, которое можно вызвать следующими способами:

1. Меню: Формат / Слой (рис. 2.7);

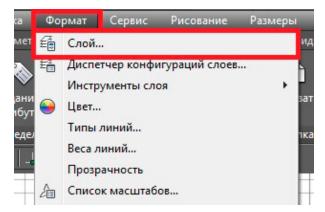


Рис. 2.7. Вызов окна «Диспетчер свойств слоев» из меню

2. Лента: Главная / Свойства слоя (рис. 2.8);

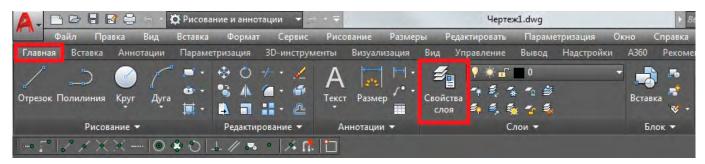


Рис. 2.8. Вызов окна «Диспетчер свойств слоев» с ленты

3. Командная строка (рис. 2.9).

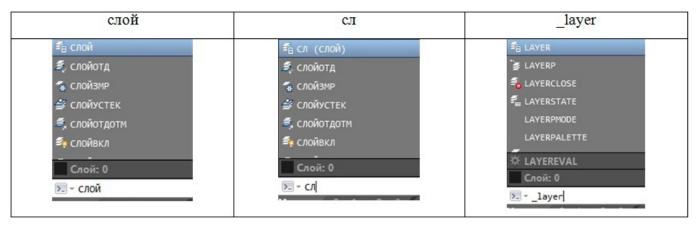


Рис. 2.9. Вызов окна < Диспетчер свойств слоев > в командной строке

Свойства *слоев* и их основные настройки представлены в окне *<Диспетчер свойств слоев>* на рис. 2.10.

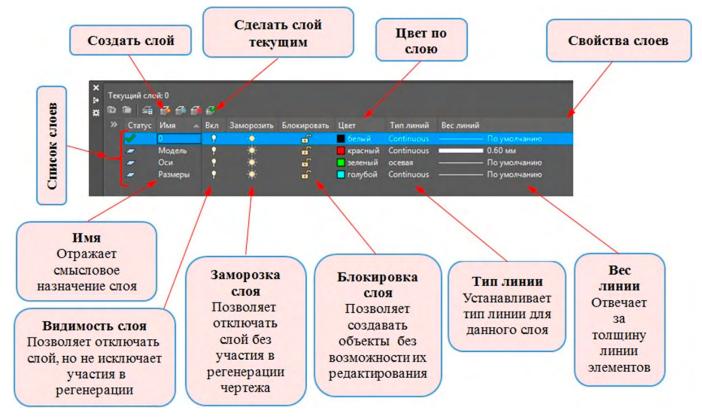


Рис. 2.10. Окно <Диспетчер свойств слоев>

Конец ознакомительного фрагмента. Приобрести книгу можно в интернет-магазине «Электронный универс» e-Univers.ru