Оглавление

Ι.	Существующие типы подвесных стрел	
	И МЕТОДЫ ИХ РАСЧЕТА НА УСТОЙЧИВОСТЬ	5
2.	УСТОЙЧИВОСТЬ ПОДЪЕМНЫХ СТРЕЛ ПОСТОЯННОГО И ПЕРЕМЕННОГО СЕЧЕНИЙ ПРИ ИХ ЖЕСТКОЙ ЗАДЕЛКЕ	11
	2.1. Стрела постоянного сечения	
	трапеции	
3.	УСТОЙЧИВОСТЬ БАЛОЧНЫХ СТРЕЛ	36
	3.1. Одноподвесные балочные стрелы.3.2. Двухподвесные балочные стрелы.3.3. Шарнирно сочлененные балочные стрелы.	41
4.	УСТОЙЧИВОСТЬ СИСТЕМЫ СТРЕЛА — КОЛОННА БАШЕННОГО КРАНА	47
	 4.1. Устойчивость системы со стрелой постоянного сечения (решение, полученное методом интегрирования дифференциальных уравнений)	55
	нагрузки на систему	60
_	колонны	
5.	УСТОЙЧИВОСТЬ СИСТЕМЫ СТРЕЛА — ГУСЕК	75
6.	РАСЧЕТ СТРЕЛ НА УСТОЙЧИВОСТЬ ПО УПРОЩЕННЫМ СХЕМАМ	88
	6.1. Расчет упруго заделанных в основание стрел	88
	6.2. Метод расчета стрелы по упрощенной схеме с учетом принципа равноустойчивости	97
	6.3. Анализ методов расчета стрел, проводимых	
	по упрощенным схемам1	02

7.	ГРАФОАНАЛИТИЧЕСКИЙ МЕТОД РАСЧЕТА СЖАТЫХ КРАНОВЫХ СТРЕЛ НА УСТОЙЧИВОСТЬ106
8.	ДИНАМИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ КРИТИЧЕСКИХ НАГРУЗОК ДЛЯ СТРЕЛ И КОЛОНН БАШЕННЫХ КРАНОВ125
9.	ПРИМЕНЕНИЕ МЕТОДА КОНЕЧНЫХ ЭЛЕМЕНТОВ ДЛЯ РАСЧЕТА УСТОЙЧИВОСТИ КРАНОВЫХ
	КОНСТРУКЦИЙ141
	9.1. Краткое описание метода конечных элементов141
	9.2. Теоретические основы
	9.3. Расчет фермы методом конечных элементов
	9.4. Расчет фермы с помощью традиционных методов,
	применяемых в сопротивлении материалов150
	9.5. Моделирование фермы в программе Algor V19
	с использованием конечного элемента типа truss154
	9.6. Устойчивость конусно-цилиндрического стержня 161
	9.7. Устойчивость составного стержня
10.	ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ УСТОЙЧИВОСТИ МОДЕЛЕЙ СТРЕЛ
	10.1. Программа и методика исследования
	10.2. Анализ результатов экспериментов и сопоставление
	их с теоретическими данными
Би	блиографический список178

1. СУЩЕСТВУЮЩИЕ ТИПЫ ПОДВЕСНЫХ СТРЕЛ И МЕТОДЫ ИХ РАСЧЕТА НА УСТОЙЧИВОСТЬ

Крановая стрела является основным узлом, обеспечивающим совместно с механизмами крана перемещение груза в нужную точку.

По способу установки на кранах стрелы делятся на две группы:

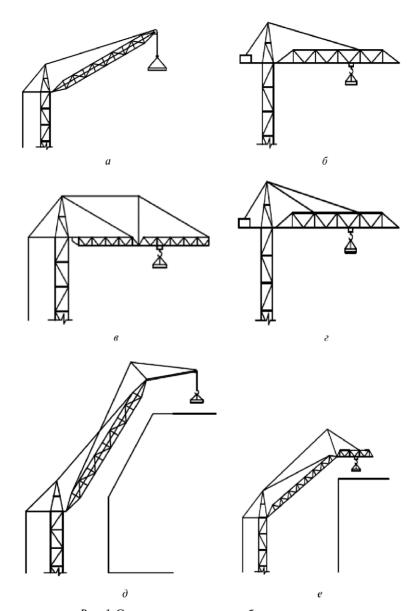
- 1) подвесные, удерживаемые в рабочем положении стреловыми расчалами;
- 2) неподвесные: а) консольного типа с жестким креплением к колонне башенного крана или корпусу самоходного стрелового крана; б) молотовидные балансирного типа с шарнирным опиранием на колонну башенного крана.

Неподвесные стрелы в настоящей работе не рассматриваются. На рис. 1 и 2 представлены схемы подвесных стрел, применяемых на башенных и самоходных стреловых кранах.

Широкое распространение на башенных кранах получили подъемные стрелы (рис. 1, a), у которых нагрузка от веса груза приложена к концу стрелы. У прямой подъемной стрелы расчал прикреплен к оси блоков на ее головке, а другой конец расчала соединен с оголовком колонны башенного крана. Поэтому эти стрелы под действием нагрузки от веса груза работают на сжатие. Такие же стрелы применяют на самоходных стреловых кранах (рис. 2, a), у которых другой конец расчала крепится к корпусу самоходного стрелового крана. В целях увеличения высоты подъема, или вылета, и более рационального использования подстрелового пространства на подъемных стрелах устанавливают гуськи (рис. 1, d и 2, d), удерживаемые в рабочем положении специальными расчалами.

Если нагрузка от веса груза приложена к головке гуська (рис. $1, \partial$ и $2, \delta$), то он работает под ее действием на сжатие. Когда гусек снабжен грузовой тележкой (рис. 1, e), то он может работать либо на сжатие (тележка расположена у головки гуська), либо на продольно-поперечный изгиб (тележка в промежуточном положении на гуське). Нижние опорные секции стрелы работают на сжатие.

На башенных кранах наибольшее распространение в последнее время получили балочные стрелы, наиболее удобные для проведения монтажных работ. Такие же стрелы под действием веса груза работают на продольно-поперечный изгиб (участок стрелы, расположенный между точками крепления стрелового расчала) и на поперечный изгиб (участок, расположенный между концом стрелы и точкой крепления стрелового расчала на стреле).



 $Puc.\ 1.$ Схемы подвесных стрел башенных кранов: a — подъемная; δ — балочная одноподвесная; ϵ — шарнирно сочлененная балочная; ϵ — балочная двухподвесная; δ — шарнирно сочлененная с гуськом; ϵ — шарнирно сочлененная с гуськом, несущим грузовую тележку

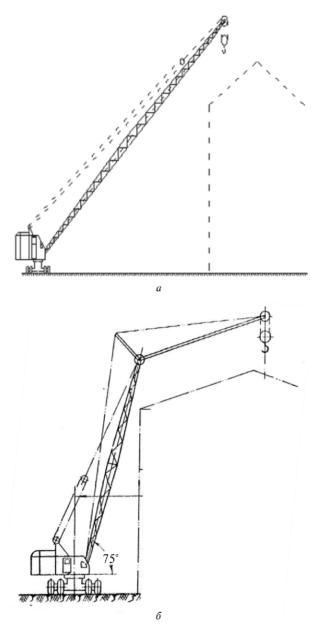


Рис. 2. Схемы подвесных стрел самоходных стреловых кранов: a- подъемная; b- шарнирно сочлененная с гуськом

Балочные стрелы удерживаются в рабочем положении одним или двумя стреловыми расчалами (одно- и двухподвесные стрелы). Схемы этих стрел приведены на рис. $1, \delta, \epsilon$. Разновидностью балочной стрелы является шарнирно сочлененная балочная стрела (рис. $1, \epsilon$). Такие стрелы применяются на мобильных башенных кранах и на кранах с большими вылетами. Так, фирма Wolf (ФРГ) выпускает башенные краны с шарнирно сочлененными стрелами длиной $100 \, \text{м}$.

Шарнирно сочлененная балочная стрела состоит из двух или трех секций, которые удерживаются в рабочем положении вантовыми растяжками, образующими совместно с промежуточными стойками в местах шарнирных соединений и секциями стрелы вантовые фермы. Такая стрела работает под действием веса груза на продольно-поперечный изгиб и сжатие (в зависимости от места приложения нагрузки). Секции стрелы расположены таким образом, что по ним может перемещаться грузовая тележка. Поэтому балочные стрелы, в том числе шарнирно сочлененные, имеют постоянное поперечное сечение (рис. 3, a) — прямоугольное или треугольное. Грузовая тележка перемещается по направляющим, прикрепленным к нижней грани стрелы.

Особенностью эксплуатации крановых стрел является то, что для обеспечения нормальной работы крана следует учитывать поперечные деформации стрелы, возникающие при пуске (торможении) механизмов передвижения крана или его поворота и действия ветровой нагрузки. При недостаточной жесткости доминирующее влияние имеет деформативность стрел и колонн, возникает их сильное раскачивание, что приводит к психофизическим нагрузкам и утомляемости машиниста крана. При недостаточной жесткости стрелы большой длины могут возникнуть поперечные колебания груза, что требует от крановщика затрат времени на их устранение, затрудняет управление краном и уменьшает производительность машины.

Необходимо отметить, что для подъемных стрел поперечные деформации существенно уменьшаются за счет применения стрел переменного сечения, которые в плане имеют очертания в виде трапеции (рис. 3, δ) или с призматической вставкой (рис. 3, ϵ).

При большой длине стрел, тенденция к использованию которых отмечается в краностроении, их необходимо не только рассчитывать на прочность (когда расчетные напряжения не должны превышать значения расчетных сопротивлений или допускаемых напряжений,

т.е. удовлетворять критериям прочности), но и определять деформации конструкций, которые не должны превышать допустимых значений (т.е. соответствовать критерию жесткости).

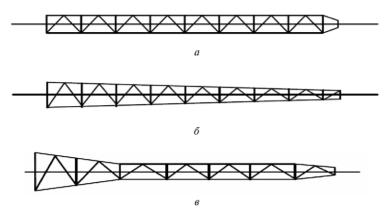


Рис. 3. Схемы подвесных стрел различного сечения в плане: a — постоянного сечения; δ — с очертанием в плане в виде трапеции; δ — с призматической вставкой

Таким критерием является гибкость — обобщенный показатель, учитывающий изгибную жесткость, геометрическую длину, конструкцию составного стержня, условия его нагружения и закрепления.

Расчет на продольно-поперечный изгиб крановых металлических конструкций, обладающих высокой гибкостью и работающих под действием груза на сжатие, выполняют либо по реальной деформированной схеме [34], либо по методике СНиП II-23—81* «Стальные конструкции».

В первом случае точность расчета зависит от значений запаса устойчивости первого рода указанных элементов, так как с их уменьшением увеличивается влияние деформационных изгибающих моментов, возникающих при продольном изгибе.

Во втором случае расчет ведется путем приведения стрелы или колонны к условной расчетной схеме — сжатой шарнирно опертой стойке постоянного сечения. Характер распределения фактически действующих нагрузок, конструктивная форма и условия закрепления концов элементов учитываются коэффициентом приведения длины µ, с помощью которого определяются расчетная длина и гибкость элемента.

Таким образом, в обоих случаях должен проводиться расчет на устойчивость. Как указано в [40], «...расчет по деформированной схеме не заменяет анализа устойчивости, который необходимо выполнять на уровне проверочных расчетов. В пространственных системах с большим количеством неизвестных возможны неочевидные (например крутильные) формы потери устойчивости». Башенный кран, например, представляет собой систему двух взаимосвязанных стержней (стрелы и колонны), расположенных в плоскости подвеса под углом друг к другу. Для сжатых консольных стержней, ось которых представляет собой ломаную линию, возможна не только плоская, но и главным образом пространственная форма потери устойчивости, сопровождающаяся закручиванием заделанного стержня [29]. Такой подход справедлив и для системы стрела — колонна башенного крана, потеря устойчивости которой из плоскости подвеса происходит в изгибно-крутильной (пространственной) форме.

Указанные подходы относятся к рассмотренным ниже инженерным методам расчета. Для повышения эффективности расчета и выбора оптимальных конструктивных решений следует применять конечно-элементное моделирование [2—7; 31—33].

2. УСТОЙЧИВОСТЬ ПОДЪЕМНЫХ СТРЕЛ ПОСТОЯННОГО И ПЕРЕМЕННОГО СЕЧЕНИЙ ПРИ ИХ ЖЕСТКОЙ ЗАДЕЛКЕ

2.1. Стрела постоянного сечения

Выпучивание стрелы будет происходить в направлении наибольшей гибкости, т.е. из плоскости подвеса, так как в плоскости подвеса гибкость будет меньше. Стрела в этом случае по устойчивости будет соответствовать шарнирно опертой стойке, для которой коэффициент приведения длины $\mu = 1$.

При выпучивании из плоскости подвеса длительное время стрела постоянного сечения рассматривалась как сжатая консольная жестко заделанная стойка, для которой $\mu = 2$ [26].

В.М. Коробов [30] и И.Я. Коган [27] впервые обратили внимание на то, что стрела находится под действием составляющей от веса груза $P_{\rm rp}$ (рис. 4), сохраняющей вертикальное направление, и усилия от натяжения в стреловой оттяжке P_0 , постоянно направленного в полюс, расположенный в головке колонны. При этом составляющая этого усилия препятствует выпучиванию стрелы из плоскости подвеса и критическая нагрузка увеличивается.

До появления указанных работ в теории рассматривалась лишь задача об устойчивости сжатой стойки, загруженной только силой, направленной в полюс [28; 39; 43].

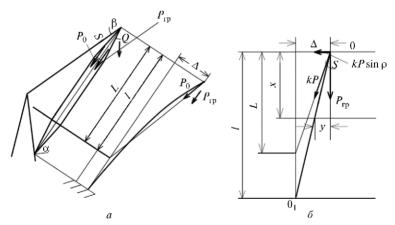


Рис. 4. Общий вид (*a*) и расчетная схема (*б*) подвесной стрелы постоянного сечения, находящейся под действием сил $P_0 = S \cos \beta = kP$ и $P_{2P} = P(1-k)$

Рассмотрим случай нагружения жестко заделанной в основании сжатой стойки постоянного сечения с оттяжкой [27]. Очевидно, что суммарная нагрузка на стойку, которая не должна превышать критическую силу, равна $P \approx P_0 + P_{\rm rp}$. Приняв начало координат 0 в вершине стойки, составим условие равенства моментов внутренних сил в сечении на расстоянии х:

$$EIy'' + (P_{rp} + P_0 x \cos \rho)y - P_0 x \sin \rho = 0,$$
 (1)

где Δ — прогиб конца стрелы (см. рис. 4, a, δ);

ho — угол между силами $P_{\rm rp}$ и P_0 (см. рис. 4, δ). Введем обозначения: $P_0/P_{\rm rp}=k$, тогда $P_{\rm rp}/P=1-k$.

Учитывая, что до момента потери устойчивости величина *\Delta* мала, можно принять $\sin \rho \approx \operatorname{tg} \rho = \Delta/L$ и $\cos \rho \approx 1$. Тогда уравнение (1) примет вид

$$EIy'' + Py - kP\frac{\Delta}{L}x = 0. (2)$$

Общее решение уравнения (2):

$$y = k\frac{\Delta}{L}x + C_1 \cos\frac{\pi x}{\mu l} + C_2 \sin\frac{\pi x}{\mu l}.$$
 (3)

Из начальных условий y(0) = 0 и $y(l) = \Delta$ найдем постоянные интегрирования: $C_1 = 0$; $C_2 = \Delta(1 - k_1)/\sin(\pi/\mu)$, где $k_1 = k(l/L) =$ $= (P_0/P)(l/L)$. Из условия v'(l) = 0 окончательно получим

$$\frac{\pi}{\mu} \frac{1}{\text{tg} \frac{\pi}{\mu}} = -\frac{k_1}{1 - k_1}.$$
 (3a)

В табл. 1 [27] приведены некоторые значения µ в зависимости от k_1 . Из данной таблицы видно, что при $k_1 = 1$ стрела эквивалентна по устойчивости шарнирно опертой сжатой стойке, для которой μ = 1. Это было также подтверждено В.М. Коробовым [30], И.Ю. Цвеем [45], которые показали, что это возможно, когда полюс, в который направлено усилие в оттяжке, расположен в плане над основанием стрелы.

При $k_1 = 0$ (стреловая оттяжка отсутствует) стрела по устойчивости эквивалентна консольной жестко защемленной в основании сжатой стойке, для которой $\mu = 2$.

Коэффициент μ можно с достаточной точностью определить по формуле [9]

$$\mu = 2.03 - k_1. \tag{36}$$

Таблица 1

Значение коэффициента µ приведения длины стрелы постоянного сечения

$\overline{k_1}$	0	0,1	0,2	0,4	0,5	0,6	0,7	0,8	0,9	1,0	1,1	1,2	1,5	2,0	00
μ	2,00	1,92	1,83	1,65	1,55	1,44	1,33	1,22	1,11	1,00	0,9	0,85	0,77	0,745	0,7

2.2. Стрела переменного сечения с очертанием в плане в виде трапеции [27]

На практике для самоходных стреловых кранов, кранов для нулевого цикла и других машин широко применяют подъемные стрелы переменного сечения с очертаниями в плане в виде трапеции. Расчетная схема стрелы приведена на рис. 5. У такой стрелы момент инерции может меняться по закону $I_x = I_1(x/b)^2$, где все обозначения приведены на рис. 5.

При выпучивании из плоскости подвеса из условия равновесия получим

$$EI_1\left(\frac{x}{b}\right)^2 y'' + Py - kP\frac{x-b}{L}\Delta = 0.$$
 (4)

С учетом подстановок, приведенных С.П. Тимошенко [42]

$$\frac{I_1}{I_2} = \left(\frac{b}{l+b}\right)^2 = \eta^4; \ I_1 = Ab^2; \ \beta = +\sqrt{\frac{l}{AE} - \frac{1}{4}}; \ k_1 = k\frac{l}{L}$$

(здесь E — модуль упругости стали), получим общее решение уравнения (4):

$$y = \sqrt{x} \left[C_1 \cdot \sin\left(\beta \cdot \ln\frac{x}{b}\right) + C_2 \cdot \cos\left(\beta \cdot \ln\frac{x}{b}\right) \right] + k_1 \frac{x - b}{L} \Delta. \tag{5}$$

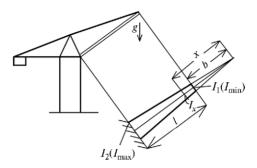


Рис. 5. Расчетная схема подвесной стрелы постоянного сечения с очертанием в плане в виде трапеции

Из условий на концах y(b) = 0; $y(b+l) = \Delta$ найдем постоянные интегрирования:

$$C_2 = 0; \ C_1 = \frac{\Delta(1 - k_1)}{\sqrt{b + l} \cdot \sin\left(\beta \cdot \ln\frac{b + l}{b}\right)}.$$

Из условия y'(l+b)=0 получим уравнение для определения критической нагрузки стрелы:

$$\frac{2\beta}{\lg(2\beta \ln \eta)} = 1 + 2\frac{k_1}{1 - k_1} \frac{b + l}{l}.$$

Имея в виду, что $P_{\text{кр}} = \frac{\pi^2 \cdot EI_2}{(\mu I)^2}$, получим

$$\beta = \sqrt{\left(\frac{\pi}{\mu}\right)^2 \cdot \left(\frac{l+b}{l}\right) - \frac{1}{4}}$$

или окончательно найдем

$$\frac{2\beta}{\text{tg}(2\beta \ln n)} = 1 + 2\frac{k_1}{1 - k_1} \frac{b + l}{l}.$$
 (6)

В табл. 2 даны значения μ в зависимости от I_1/I_2 и k_1 , вычисленные по формуле (6).

 Таблица 2

 Значения коэффициента µ приведения длины стрелы переменного сечения с очертанием в плане в виде трапеции

	k_1													
I_1/I_2	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0	1,1	1,2	
0,1	2,7	2,59	2,51	2,42	2,32	2,22	2,09	1,96	1,85	1,75	1,64	1,63	1,48	
0,2	2,48	2,38	2,28	2,19	2,09	1,99	1,88	1,77	1,66	1,54	1,43	1,35	1,28	
0,3	2,38	2,28	2,19	2,09	1,98	1,88	1,77	1,66	1,54	1,43	1,34	1,26	1,00	
0,4	2,24	2,15	2,06	1,97	1,87	1,76	1,66	1,56	1,44	1,34	1,24	1,15	1,06	
0,5	2,2	2,10	2,01	1,92	1,82	1,72	1,61	1,51	1,40	1,29	1,18	1,09	1,01	
0,6	2,15	2,06	1,97	1,88	1,78	1,68	1,58	1,46	1,36	1,26	1,16	1,06	0,99	
0,7	2,08	1,99	1,91	1,82	1,73	1,63	1,53	1,42	1,30	1,20	1,09	1,00	0,93	
0,8	0,05	1,96	1,88	1,79	1,70	1,60	1,49	1,39	1,28	1,16	1,06	0,96	0,89	
0,9	0,02	1,94	1,85	1,76	1,67	1,57	1,47	1,36	1,25	1,13	1,03	0,93	0,87	
1,0	2,0	1,92	1,83	1,74	1,65	1,55	1,45	1,34	1,23	1,11	1,00	0,91	0,85	

Значения μ при $k_1=0$ соответствуют данным, полученным С.П. Тимошенко [42] для стержня переменного сечения со свободным концом.

На рис. 6 дан график значений коэффициента приведения длины стрелы переменного сечения с очертанием в плане в виде трапении.

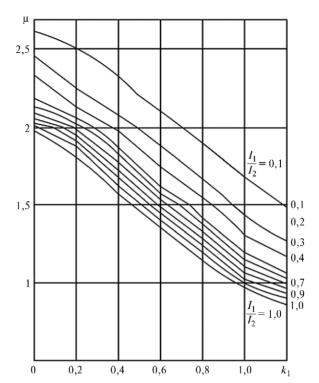
На практике конструкторы определяют коэффициент приведения длины стрелы переменного сечения μ как произведение двух коэффициентов [27]:

$$\mu = \mu_1 \cdot \mu_2$$

где μ_1 — коэффициент, учитывающий граничные условия;

 μ_2 — коэффициент, учитывающий изменение момента инерции по длине стрелы.

Так, например, если перемножить значение μ_1 для стойки со свободным концом и отношением моментов инерции $I_1/I_2=0,5$ со значением μ_2 для стрелы постоянного сечения $(I_1/I_2=1)$ с оттяжкой при $k_1=0,8$, то получим (см. табл. 2) $\mu=2,2\cdot 1,23\approx 2,7$.



Puc. 6. График значений коэффициента приведения длины стрелы переменного сечения с очертанием в плане в виде трапеции

Тогда как для I_1/I_2 и $k_1=0.8$ по табл. 2 имеем $\mu=1.4$.

Таким образом, критическая нагрузка, найденная по этому методу, будет ниже в 3,7 раза по сравнению со значением, определенным методом, описанным выше. Это приводит к завышению гибкости и требует неоправданного усиления и утяжеления металлоконструкции стрелы.

2.3. Стрела переменного сечения с призматической вставкой [12]

Стрелы с призматическими вставками применяются на самоходных стреловых, башенных и других кранах. Такие стрелы получают из стрел переменного сечения с очертанием в плане в виде трапеции путем установки в середине стрелы дополнительных призматических секций.

Точное решение задачи об устойчивости стрелы с призматической вставкой путем интегрирования трех линейных дифференциальных уравнений изгиба приводит после длительных преобразований к громоздкому трансцендентному уравнению, решение которого возможно лишь путем подбора корней. Из этого уравнения невозможно получить коэффициент и как явную функцию геометрических размеров и моментов инерции стрелы.

Задача может быть решена значительно проще, если воспользоваться энергетическим методом [39; 42]. Примем начало координат в основании стрелы 0_1 (см. рис. 4). На стрелу действует осевое усилие $P_{\rm KD}$ от веса груза и усилие P_0 от натяжения оттяжки.

Аппроксимируем кривую прогибов стрелы в виде тригонометрического ряда, сохранив в нем только два члена:

$$y = f_0 \left(1 - \cos \frac{\pi x}{2l} \right) + f_1 \left(1 - \cos \frac{3\pi x}{2l} \right), \tag{7}$$

где f_0 и f_1 — произвольные параметры. Это уравнение удовлетворяет условию на концах

$$y(0_1) = 0; y'(0_1) = 0; y(l) = f_0 + f_1 = \Delta; y'(l) \neq 0.$$
 (8)

Критическая сила определится из условия

$$U = T_1 - T_2, \tag{9}$$

где U — потенциальная энергия изгиба:

$$U = \int_{0}^{l} \frac{EI(x)}{2} (y'')^{2} \cdot dx; \tag{10}$$

 T_1 — работа сжимающей силы P при опускании конца стрелы:

$$T_1 = \int_0^l \frac{P}{2} (y')^2 \cdot dx; \tag{11}$$

 T_2 — работа составляющей kP(y(l)/L) усилия в оттяжке (см. рис. 4, б):

$$T_2 = \int_0^I kP \frac{\Delta}{L} d\Delta = kP \frac{\Delta^2}{2L}.$$
 (12)

Дифференцируя выражение (7), найдем

$$y' = \frac{\pi}{2l} \cdot f_0 \sin\frac{\pi x}{2l} + \frac{3\pi}{2l} \cdot f_1 \sin\frac{3\pi x}{2l};$$

$$y'' = \left(\frac{\pi}{2l}\right)^2 \cdot f_0 \cos\frac{\pi x}{2l} + \left(\frac{3\pi}{2l}\right)^2 \cdot f_1 \cos\frac{3\pi x}{2l}.$$
(13)

Пользуясь формулами (10)—(12) и найденными величинами y', y'' и Δ , определим значения U, T_1 и T_2 .

Для вычисления потенциальной энергии U рассмотрим законы изменения моментов инерции на различных участках стрелы. На участках OA и BC (рис. 7) момент инерции выражается через I_{\max} соответственно в виде

$$I_x = I_{\text{max}} \left(\frac{l_1 + a_1 - x}{l_1 + a_1} \right)^2$$
 (участок *OA*);

$$I_x = I_{\max} \left(\frac{a_1}{l_1 + a_1} \right)^2 \left(\frac{l_3 + a_3 - x}{l_3 + a_3} \right)^2$$
 (участок *BC*).

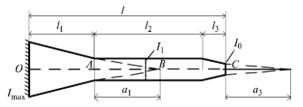


Рис. 7. Стрела переменного сечения с призматической вставкой

На средней части стрелы имеем

$$I_x = I_{\text{max}} \left(\frac{a_1}{l_1 + a_1} \right)^2$$
 (участок AB).

Тогда на основании формулы (10), произведя интегрирование и выполнив ряд преобразований, получим

$$U = \frac{EI_{\text{max}} f_0^2 \pi^4 (p + 9rz + gz^2)}{64I^3},$$
 (14)

где $z = f_1/f_0$; p, r, g — коэффициенты, определяемые из табл. 3 в зависимости от геометрических размеров и моментов инерции стрел, наиболее часто встречающихся в практике.

Вычисление параметров p, r, и g произведено отделом механизации расчетов института Промстройпроект (Москва).

Воспользовавшись формулами (11) и (13), после интегрирования найдем

$$T_1 = \frac{P\pi^2}{16l}(f_0^2 + 9f_1^2); T_2 = \frac{kP}{2L}(f_0 + f_1)^2.$$

Тогда

$$T_1 - T_2 = \frac{Pf_0^2}{16l} \left[(1 + 9z^2) \frac{\pi^2}{8} - k_1 (1 + z)^2 \right], \tag{15}$$

где $k_1 = k(l/L)$.

Подставив найденные значения U и $T_1 - T_2$ в равенство (9), решим его относительно P. После преобразования получим

$$P = \frac{\pi^2 E I_{\text{max}}}{(\mu I)^2},\tag{16}$$

где

$$\mu = +\sqrt{\frac{32\left[\frac{\pi^2}{8}(1+9z^2) - k_1(1+z)^2\right]}{\pi^2(p+9rz+gz^2)}}.$$
(17)

Сжимающая сила достигает критического значения $P_{\rm kp}$ при условии $\partial P/\partial z=0$, что приводит к квадратному уравнению для определения z.

$$z^{2} \left[9r \left(\frac{9\pi^{2}}{8} - k_{1} \right) + 2k_{1}g \right] + 2z \left[p \left(\frac{9\pi^{2}}{8} - k_{1} \right) - g \left(\frac{\pi^{2}}{8} - k_{1} \right) \right] - \left[2k_{1}p + 9r \left(\frac{\pi^{2}}{8} - k_{1} \right) \right] = 0.$$
 (18)

Конец ознакомительного фрагмента. Приобрести книгу можно в интернет-магазине «Электронный универс» e-Univers.ru