Оглавление

Предисловие	4
Глава 1. История возникновения и развития учения о свободнорадикальных процессах	
Литература к главе 1	11
Глава 2. Биологическая роль свободнорадикальных процессов в организме	12
2.1. Характеристика активных форм кислорода. Источники образования активных форм кислорода в тканях	12
2.2. Биологическая роль свободнорадикальных процессов в клетке	24
2.3. Современные представления о повреждающей роли АФК	24
и методы регистрации продуктов перекисного окисления	40
Литература к главе 2	47
Глава 3. Природные и синтетические антиоксиданты	50
3.1. Внутриклеточные защитные системы— классификация и механизм действия	
3.1.1. Ферментные антиоксидантные системы	52
3.1.2. Неферментные антиоксиданты и особенности их функционирования	58
3.1.3. Хелаторы ионов металлов переменной валентности	
3.1.4. Синтетические антиоксиданты	81
3.1.5. Специфические защитные внутриклеточные белки	
Литература к главе 3	94
Глава 4. Современные представления о стратегии защиты клеток от свободнорадикальных процессов	96
4.1. Соотношение прооксидантных и антиоксидантных факторов в клетке. Критерии оценки	96
4.2. Эндогенная защита и пути её формирования	
Литература к главе 4	104
Заключение	105
Вопросы для зачёта	106
Темы рефератов	107
Тесты для контроля усвоения знаний	110
Об авторах	119

ПРЕДИСЛОВИЕ

Учебник «Химия биологически активных веществ: природные и синтетические антиоксиданты» предназначен для студентов, обучающихся по направлению подготовки 44.03.05 — педагогическое образование (с двумя профилями подготовки) профиль «Биология и химия».

Учебник составлен в соответствии с государственным образовательным стандартом высшего образования и соответствует ряду компетенций, освоение которых предусмотрено ФГОС ВО 3+, ФГОС ВО 3++ при подготовке бакалавров по направлению «Педагогическое образование» (профиль «Биология и химия»).

В учебнике рассмотрены основные принципы и биохимеханизмы протекания свободнорадикальных процессов в живых организмах, функционирования живой клетки в условиях аэробного метаболизма, защиты клетки от окислительного стресса. Представлены современные понятия о протекании свободнорадикальных процессов в живых организмах, о физиологическом и патологическом значении активных форм кислорода и свободных радикалов, биологически активных веществ. Продемонстрирована жизненная необходимость образования активных форм кислороживой клетке, рассмотрена биологическая поддержания баланса между свободными радикалами и антиоксидантами, а также изменение этого баланса, ведущее к ингибированию или активации синтеза компонентов антиоксидантной клеточной защиты.

В каждой главе учебника имеются схемы и иллюстрации, которые облегчают понимание биохимических и молекулярных механизмов изучаемых процессов.

Глава 1 ИСТОРИЯ ВОЗНИКНОВЕНИЯ И РАЗВИТИЯ УЧЕНИЯ О СВОБОДНОРАДИКАЛЬНЫХ ПРОЦЕССАХ

Понятие «радикалы» зародилось в дискуссиях химиков более 200 лет назад (вторая половина XVIII века). Термин «радикал» (от лат. radix — корень) предложил Лавуазье, назвавший так химически активные вещества, в то время еще неясной природы. Лавуазье наблюдал образование радикалов из органических веществ, но выделить их в свободном виде не мог из-за высокой реакционной способности и неустойчивости, поэтому в их существование долгое время никто не верил. Многочисленные попытки выделения радикалов в течение всего XIX в. не дали результата. Только в 1900 г. учёный-химик из США Мозес Гомберг (1866-1947) в ходе опытов с органическими веществами случайно получил свободные радикалы, благодаря чему стал знаменитым основателем химии свободных радикалов. Однако только с развитием квантовой механики удалось объяснить химическую природу радикалов, а после появления метода электронного парамагнитного резонанса (Завойский, 1945) стало возможным прямо измерять их.

Другая линия зарождения свободнорадикальной биологии ведёт своё начало с работ великого французского химика Антуана Лавуазье (1743–1794), который впервые показал ролькислорода, открытого английским химиком Джозефом Пристли, в процессах горения, окисления и дыхания.

В 1604 году, за 170 лет до Шееле, Пристли и Лавуазье, польский алхимик Михаил Сендивогий писал: «Человек возник на Земле и живёт на ней благодаря воздуху; в воздухе есть тайная пища для жизни... чей сконцентрированный невидимый дух лучше, чем вся Земля» [Лэйн Н., 2016].

В 1818 году французский исследователь, Луис-Жакоб Тенард, впервые описал перекись водорода и показал, что она может разлагаться живыми тканями с выделением молекулярного кислорода.

Впервые реакционная сущность кислородных радикалов была выявлена Фентоном в 1894 году. Изучая окисление различных соединений, он показал, что окислительная способводорода значительно возрастает перекиси присутствии сульфата железа. Смесь Н2О2 с солями железа была названа реактивом Фентона. В дальнейшем Ф. Габер (1868-1934) и Й. Вайс (1905-1972) обнаружили, что высокая реакционность реактива Фентона обусловлена образованием ОН-радикалов, и показали, что для протекания реакции необходимо восстановление ионов железа. В 1930-х годах в работах Л. Михаэлиса (1875-1949) было показано, что абсолютное большинство химических реакций протекает через участие свободных радикалов.

Дальнейшее изучение химии радикалов связано с созданием ядерного оружия. Возникла острая необходимость изучения биологических эффектов ядерного оружия и разработки средств радиационной защиты. Проведённые в 50–60-х годах исследования влияния радиации на живые организмы показали, что действие ионизирующих излучений реализуется через образование радикалов, возникающих при расщеплении молекулы воды. В это же время группой химиков во главе с лауреатом Нобелевской премии Н. Н. Семеновым была разработана теория цепного радикального окисления органических молекул, которая оказалась применимой для окисления липидов в составе клеточных мембран. Объединив данные положения, Б. Н. Тарусов (1900–1977) выдвинул концепцию о свободнорадикальной патологии, которая вызывается усилением процессов свободнорадикального окисления.

Положительные свойства свободных радикалов в живых организмах были открыты в 1972–1973 годах. В это время была показана связь дыхательного «взрыва» в фагоцитирующих клетках с наработкой активных форм кислорода (АФК). Оказалось, что микробицидная функция фагоцитов, осуществляющих защиту организма от бактериальных инфекций, во многом зависит от способности клеток нарабатывать супероксидный радикал и перекись водорода. Показано, что кислородные радикалы широко вовлечены в процессы неспецифической резистентности организма и иммунорегуляции. Более того,

снижение их продукции ослабляет неспецифический иммунитет и может являться причиной бактериального инфицирования.

Показано, что свободные радикалы являются ключевыми элементами регуляции многих физиологических процессов на всех уровнях: от регуляции активности внутриклеточных ферментов до нервной регуляции сократительной функции желудка и внешнего дыхания.

Такое разнонаправленное действие АФК получило название Янус-эффекта. Позже сравнения с двуликим Янусом были удостоены активные формы азота (NO, NO_2° , NO^+ , NO^- , ONOO-), а ещё позже — активные карбонильные соединения (метилглиоксаль,4-гидрокси-2,3-ноненаль, акролеин, формальдегид).

Активные карбонильные соединения (АКС) содержат альдегидную или кето-группу, или обе группы сразу, как, например, метилглиоксаль. Карбонильный углерод обладает электрофильными свойствами и может атаковать нуклеофильные центры (азот амино- и имидазольных групп, а также серу тиоловых групп) в белках, нуклеиновых кислотах и липидах. В результате этих реакций биомолекулы изменяются — появляются новые химические группировки, внутри- и межмолекулярные сшивки. А изменённые молекулы уже не могут правильно работать [Космачевская О. В., Топунов А. Ф., 2019].

В организме АКС образуются как побочные продукты метаболизма глюкозы и некоторых аминокислот, а также перекисного окисления липидов. Их концентрация в клетке регулируется специальными системами, поэтому в норме они не причиняют вред. Однако при различных заболеваниях, например при сахарном диабете или хронической почечной недостаточности, АКС накапливаются в клетках и тканях в больших количествах, где атакуют биомолекулы и повреждают их. Чаще всего страдают «долгоживущие» белки, склонные накапливать АКС: белки соединительной ткани — коллаген и эластин, белок эритроцитов — гемоглобин и белок глазного хрусталика — α -кристаллин. В результате гемоглобин хуже отдаёт кислород, коллаген теряет эластичность, а кристаллин.

В таблице 1 кратко показаны основные этапы зарождения свободнорадикальной биологии.

История развития свободнорадикальной биологии [по Фархутдиновой Л. М., 2015]

1703 г. Немецкий врач и химик Георг Эрнст Шталь (1659– 1734)	Учение о флогистоне, объяснявшее горение наличием в телах живой и неживой природы горючего вещества — флогистона, который выделяется в воздух при сжигании веществ, а дыхание — удалением лишнего тепла из организма. Учение Шталя господствовало в течение почти 100 лет, до конца XVIII в.
1772 г. Выдающийся английский химик Дж. Пристли (1733–1804)	Обнаружил, что мышь не может дышать кислородом так же долго, как воздухом, и пришёл к выводу о том, что в кислороде жизнь сгорает слишком быстро
1775 г. Великий французский химик Антуан Лоран Лавуазье (1743–1794)	Установил, что атмосферный воздух состоит из кислорода и азота, и горение обусловлено окислением горючих веществ в результате взаимодействия с кислородом воздуха. Дыхание, по кислородной теории Лавуазье, — это медленное горение, или окисление, в живом организме с образованием тепла и энергии
1900 г. Учёный-химик из США Мозес Гомберг (1866–1947)	В ходе опытов с органическими веществами случайно получил свободные радикалы
1914 г. Учёный-химик Л.В. Писаржевский (1874–1938)	Предложил электронно-ионную теорию окислительно-восстановительных реакций, согласно которой химическое взаимодействие между веществами — это обмен электронами
1930 г. Советский биохимик В. А. Энгельгард (1894–1984)	Исследуя процессы окисления в клетке на примере эритроцитов птиц, сделал вывод, что поглощаемый клеткой кислород идет на образование аденозинтрифосфата (АТФ). Этот процесс получил название окислительного фосфорилирования

1939 г. Советский биохимик В. А. Белицер (1906–1988)	Показал, что при окислительном фосфорилировании происходит перенос электронов с пищевых биомолекул на кислород, и этот процесс с двухэлектронным восстановлением кислорода представляет собой основной способ получения энергии для всего живого мира
1939 г. Немецкий биохимик и химик органик Леонор Миха- элис (1875–1949)	Изучая окислительные процессы в тканях животных, обнаружил, что они идут с образованием радикалов
1950-е годы советский биофизик Б. Н. Тарусов (1900–1977)	Показал, что ионизирующее излучение вызывает в биологических объектах развитие свободнорадикальной реакции, являющейся важным фактором патогенеза лучевой болезни. Обладая мощным энергетическим влиянием, ионизирующая радиация активирует процессы окислительного фосфорилирования, что сопровождается усилением одноэлектронного восстановления кислорода. Сформулировал концепцию о «свободнорадикальной патологии», согласно которой свободнорадикальным реакциям принадлежит ведущая роль в развитии патологических процессов в клетке, органах и тканях. В настоящее время насчитывается более 200 болезней и патологических состояний, при которых установлено участие механизмов свободнорадикального окисления
Советский физико-химик Н. Н. Семенов (1896–1986) и английский физико-химик С. Н. Хиншелвуд (1887–1967), удостоенные Нобелевской премии 1956 г.	Впервые объяснили взрывообразный характер свободнорадикального окисления механизмом разветвленной цепной реакции, получившей название «эффекта сплетен», в результате которого небольшое число первичных свободных радикалов вызывает взрывообразный рост их числа

1954 г. Американский исследо-	Выдвинул теорию, согласно которой
ватель Д. Харман	снижение активности антиоксидантной системы с возрастом приводит к повышению интенсивности свободнорадикального окисления
1960-е гг. нобелевский лауреат А. Сент-Дьердьи (1893–1986)	Показал, что клетки используют образующийся в них метилглиоксаль для регуляции роста, деления и смерти.
1961 г. биофизик А.И. Журав- лев	Обнаружил антиоксилительную активность в животных организмах
1968 г. американские биохимики Джо Маккорд и Ирвин Фридович	Показали, что сине-зелёный белок гемокупреин, долгое время считавшийся инертным отложением меди, обладает каталитической активностью. Он превращает супероксидные радикалы в пероксид и кислород
1969 г. Джо Маккорд и Ирвин Фридович	Переименовали белок гемокупреин в фермент супероксиддисмутаза. Это единственный известный фермент, субстратом которого являются радикалы. Супероксиддисмутаза превращает супероксидные анион-радикалы в молекулярный кислород и перекись водорода, которая разрушается ферментами — каталазой и пероксидазой, что обрывает цепь свободнорадикального окисления
1988 г. Суе-Гоо Ре с коллегами из Национального института сердца, лёгких и крови в США	Открыли новое семейство антиоксидантных ферментов — пероксиредоксины. В активном центре этих ферментов нет иона металла, зато есть два соседних атома серы, которые принимают электроны от маленького серосодержащего белка тиоредоксина. К середине 1990-х гг. похожие пероксиредоксины были выделены из представителей всех доменов жизни. К настоящему времени известно не менее 200 генов родственных пероксиредоксинов и определена последовательность пяти человеческих генов

Таким образом, свободнорадикальная биология впитала в себя большое количество противоречивых фактов и прошла длинный путь от теоретических догадок до осознания жизненно важной функции кислородных радикалов.

Литература к главе 1

- 1. Зенков Н. К., Ланкин В. З., Меньщикова Е. Б. Окислительный стресс: Биохимический и патофизиологический аспекты. М.: МАИК «Наука/Интерпериодика», 2001. 343 с.
- 2. *Космачевская О. В., Топунов А. Ф.* Зарядка, холод, алкоголь что общего? // Химия и жизнь. 2019; (6): 33–7.
- 3. *Космачевская О. В., Шумаев К. Б., Топунов А. Ф.* Сигнальное и регуляторное действие метилглиоксаля в эукариотических клетках (Обзор) // Прикладная биохимия и микробиология. 2017; 53 (3): 253–70.
- 4. *Лэйн Ник*. Кислород. Молекула, изменившая мир. М.: Изд-во «Э», 2016. 592 с.
- 5. *Фархутдинова Л. М.* Окислительный стресс. История вопроса // Вестник академии наук РБ. 2015; 20 (1): 42–9.

Глава 2 БИОЛОГИЧЕСКАЯ РОЛЬ СВОБОДНОРАДИКАЛЬНЫХ ПРОЦЕССОВ В ОРГАНИЗМЕ

Одной из первых глобальных экологических катастроф, произошедших на планете Земля, было «загрязнение» биосферы молекулярным кислородом — продуктом жизнедеятельности сине-зелёных водорослей. Этим были обусловлены как вымирание большей части древних анаэробных прокариот, так и мощный эволюционный рывок в развитии живых организмов, который привёл к появлению аэробных эукариот, а в последующем — к огромному разнообразию животных и растительных организмов. Живые организмы успешно справились с возникшей проблемой:

- 1) появился эффективный энергопродуцирующий механизм окислительное фосфорилирование;
- 2) многоклеточные организмы научились использовать реакционные продукты неполного восстановления O_2 (активные формы кислорода АФК) для своей защиты от бактериальных агрессий, а также в качестве эффективного механизма внутри- и межклеточной сигнализации.

В настоящее время доказано, что АФК являются ключевыми элементами регуляции многих физиологических процессов на различных уровнях. Участие одних и тех же молекул в повреждении клеток и тканей, в их защите от внешней агрессии и в процессах внутри- и межклеточной регуляции позволяет считать, что образование АФК является характерным физиологическим процессом, результатом эволюционного отбора.

2.1. Характеристика активных форм кислорода. Источники образования активных форм кислорода в тканях

Основное количество молекулярного кислорода (95–98%), потребляемое организмом, расходуется на выработку энергии и окислительный катаболизм субстратов. Кроме че-

тырёхэлектронного восстановления молекулы O_2 на компонентах дыхательной цепи митохондрий в аэробных клетках всегда происходит и неполное — одно-трёхэлектронное восстановление с образованием различных активных форм кислорода или прооксидантов. Это — супероксидный анионрадикал — O_2 °, перекись водорода — H_2O_2 , гидроксильный радикал — OH° (реакции 1):

Основными свойствами АФК являются — высокая реакционная способность, короткое время жизни и относительно низкая концентрация в тканях. Всё это делает АФК эффективным инструментом локального действия. Особенное значение приобретают АФК в деятельности органов, отличающихся высоким уровнем аэробного метаболизма. К таким органам относятся сердце, мозг, лёгкие. Так, например, сердце при массе, составляющей всего 0,5 % массы тела, поглощает около 10 % всего кислорода, потребляемого организмом.

Согласно современным представлениям все АФК можно разделить на 3 группы в зависимости от их происхождения и биологического действия — первичные, вторичные и третичные.

Первичные радикалы образуются при одноэлектронном окислении молекул с участием металлов переменной валентности. Эти радикалы функционируют в нормальных физиологических условиях и участвуют в различных биохимических процессах, выполняя жизненно важные функции. К ним относятся супероксидный анион-радикал $(O_2^{-\circ})$ и перекись водорода (H_2O_2) , участвующие в защите клетки от микроорганизмов, убихинон (коэнзим Q), участвующий в транспорте электронов в дыхательной цепи, оксид азота (NO) — многофункциональная молекула. Первичные радикалы в физиологических концентрациях не обладают мембранотоксичностью и не оказывают на организм патогенного действия. Более того, поскольку они участвуют в процессах жизнедеятельности

здоровых клеток, их устранение может способствовать развитию негативных явлений, приводящих к нарушению нормальных физиологических функций организма.

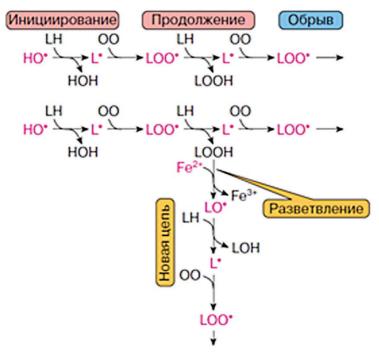
Супероксидный анион-радикал образуется в результате присоединения одного электрона к молекуле кислорода. Как анион O_2 - $^\circ$ имеет заряд и плохо мигрирует через мембраны. Обладая способностью и отдавать, и принимать электроны, O_2 - $^\circ$ может выступать и как восстановитель, и как окислитель. Среди его мишеней небольшие органические молекулы — катехоламины, низкомолекулярные тиолы, аскорбат, тетрагидроптерины. В кислой среде он способен образовывать гидропероксильный радикал — H_2O° , являющийся гораздо более активным окислителем, чем супероксидный анион-радикал.

Перекись водорода. В норме $O_2^{-\circ}$ под действием супероксиддисмутазы (СОД) превращается в H_2O_2 , которая используется, в частности для синтеза гипохлорита (СІО-) или разлагается нерадикальным путём под действием других защитных ферментов — пероксидаз, наибольшей активностью среди которых обладают каталаза и глутатионпероксидаза.

Оксид азота. Оксид азота (NO°) — высоколабильный, реактивный свободный радикал, который способен влиять на целый ряд физиологических и патологических процессов в организме животных и человека. Биологическая роль NO° в большей степени определяется малой величиной молекулы, её высокой реактивностью и способностью к диффузии в тканях. Образование NO° в организме человека и животных происходит при ферментативном окислении L-аргинина и обнаружено во многих клетках и тканях. Синтез NO° осуществляется семейством уникальных цитохром-Р-450-подобных гемопротеинов — NO-синтаз. Для работы NO-синтаз необходим кислород, поскольку он служит источником 0_2 -°, включающегося в гуанидиновую группу L-аргинина. В результате этой реакции происходит 5-электронное окисление L-аргинина с образованием L-цитруллина и NO. Синтез NO° с участием различных NOсинтаз является доминирующим, но не единственным путём его генерации in vivo. Так, описаны катализируемое ксантиноксидазой восстановление нитрита в NO° в условиях тканевого ацидоза и при гипоксии, а также зарегистрирована реакция между аргинином и H_2O_2 с образованием NO° .

Диапазон проявлений биологический активности NO° огромен. Было показано, что этот радикал участвует в регуляции тонуса кровеносных сосудов как эндогенный вазодилататор и антагонист адренергической нервной системы, а также тормозит агрегацию тромбоцитов и их адгезию на стенках сосудов. NO° проявляет и цитотоксическую активность, выступая в качестве одного из основных эффекторов системы клеточного иммунитета.

Повреждающее действие $N0^\circ$ во многом опосредуется его способностью реагировать с $O_2^{-\circ}$ с образованием чрезвычайно реакционного пероксинитрита. Пероксинитрит в свою очередь повреждает любые белковые молекулы, в том числе и ферменты антиоксидантной защиты. Так, обнаружено, что пероксинитрит может повреждать митохондриальную Mn-COД и глутатионпероксидазу, что ещё более увеличивает уровень $O_2^{-\circ}$ и в дальнейшем — пероксинитрита.


Вторичные свободные радикалы образуются из H_2O_2 , липоперекисей и гипохлорита в присутствии ионов Fe (II). К ним относятся — гидроксильный радикал и липидные радикалы, участвующие в реакциях окисления ненасыщенных жирнокислотных цепей липидов биологических мембран и липопротеинов плазмы крови.

Гидроксильный радикал. Дальнейшее одноэлектронное восстановление перекиси водорода, происходящее в присутствии свободных ионов Fe²⁺ и Cu⁺ (реакция Фентона, 2), приводит к образованию OH°, который является весьма сильным окислителем, способным атаковать нуклеиновые кислоты, белки и фосфолипиды.

$$H_2O_2 + Fe^{2+} \rightarrow OH^- + OH^\circ + Fe^{3+}$$
 (2)

ОН-радикал может разрывать любую С-Н или С-С-связь, при этом скорость его взаимодействия с большинством органических соединений достигает величин, равных скорости его диффузии. В обычных условиях образование ОН° протекает достаточно слабо и усиливается в присутствии металлов переменной валентности.

Гидроксильный радикал атакует боковые цепи ненасыщенных жирных кислот с отщеплением водорода и образованием *липидного радикала* (L°) (*реакции 3*), который в присутствии кислорода переходит в органические радикалы кислорода (LOO°) — *пероксильные* радикалы. Они, в свою очередь, забирают водород от жирнокислотных цепей фосфолипидов с образованием *гидроперекисей липидов* (LOOH). Одновременно с этой реакцией появляются новые липидные радикалы, которые могут вновь вступить в реакционный цикл.

(3) Реакции цепного окисления липидов [по Владимирову Ю. А., Проскуриной Е. В., 2007]

В результате свободнорадикального окисления жирнокислотных остатков фосфолипидов образуются продукты, которые являются источниками различных биологически активных соединений. Так, жирнокислотные ацилы до свободнорадикального окисления могут быть предварительно от-

щеплены от фосфолипидов с помощью фермента фосфолипаза типа A_2 . Тогда в результате действия липоксигеназы, при окислении жирных кислот образуются лейкотриены, а с помощью циклооксигеназы — простагландины, тромбоксаны и простациклины. При окислении жирнокислотных ацилов без выщепления их из состава фосфолипидов образуются диеновые конъюгаты, гидроперекиси липидов, а затем — газообразные продукты и карбонильные соединения типа альдегидов и, наконец, шиффовы основания, то есть первичные, вторичные и конечные продукты перекисного окисления липидов.

Третичные радикалы — образуются при взаимодействии вторичных радикалов с молекулами антиоксидантов и других легко окисляющихся соединений. При этом радикал антиоксиданта, вступая в реакцию с гидроперекисями липидов, образует стабильные радикалы с малой реакционной способностью.

Существует принципиальная разница в функционировании первичных и вторичных радикалов в организме. Первичные радикалы специально вырабатываются клетками и участвуют в переносе электронов в дыхательной цепи (убихинон), защите от микроорганизмов (O_2 -°) и регуляции кровяного давления (NO°). Вторичные радикалы в основном оказывают цитотоксическое действие, вызывая повреждение нуклеиновых кислот, инактивацию ферментов и активацию свободнорадикальных процессов в мембранах клеток.

Источниками свободных радикалов в организме являются самые различные процессы, протекающие как вне-, так и внутри клеток. Обнаружен целый ряд специальных ферментов, основной функцией которых является генерация АФК:

- в дыхательной цепи митохондрий NADP-зависимая дегидрогеназа и NAD-зависимая убихинонредуктаза генерируют O_2 .°;
- в процессе активации NADPH-оксидазы фагоцитирующих клеток крови, эндотелиальных клеток, хондроцитов и астроцитов образуется O_2 - $^\circ$;
- при синтезе простагландинов как по циклооксигеназному пути, так и липоксигеназному пути;
- в системе миелопероксидаза-H2O2-галогены, которая запускается вследствие активации фагоцитоза и приводит к образованию O_2 -°, OCl- и OH°;

- при спонтанном $(O_2^{-\circ})$ или катализируемом (H_2O_2) моноаминооксидазами окислении дофамина и адреналина;
- в процессе синтеза NO° в реакции дезаминирования аминокислоты L-аргинина до цитруллина при участии гем содержащих ферментов NO-синтаз;
- при окислении антиоксидантов, например, глутатиона, аскорбиновой кислоты.

Основным источником $A\Phi K - O_2^{-\circ}$, H_2O_2 и OH° в клетке являются *митохондрии*, что было впервые показано на клетках миокарда животных и человека. В нормальных условиях при окислительном фосфорилировании в митохондриях менее 5 % молекулярного кислорода преобразуется в $A\Phi K$. Основными участками дыхательной цепи митохондрий, где образуются $A\Phi K$, являются ферменты NADH-зависимая дегидрогеназа и NADH-зависимая убихинонредуктаза. В физиологических условиях в митохондриях $O_2^{-\circ}$ и H_2O_2 метаболизируются Mn-COД и глутатионпероксидазой, в результате концентрация этих $A\Phi K$ поддерживается на низком уровне.

Образование АФК в митохондриях может возрастать при различных патологических состояниях, в частности при ишемии/реперфузии органов, как показано на сердце и почках, при гипоксии/реоксигенации кардиомиоцитов и при старении организма. Так, например, увеличение степени восстановленности переносчиков дыхательной цепи (NAD, NADP, FAD, коэнзим-Q), а также снижение активности СОД при ишемии создают благоприятные условия для образования O_2 -°. Кроме того, показано, что при ишемии восстановленные формы переносчиков дыхательной цепи — NAD, FAD и коэнзим-Q подвергаются автоокислению с образованием АФК, инициирующих свободнорадикальное окисление.

Немаловажную роль в образовании АФК играет изменение мембранного потенциала митохондрий. Так, показано, что ингибирование окислительного фосфорилирования в митохондриях приводит к повышению мембранного потенциала и усилению образования АФК.

Наиболее хорошо изученным ферментом, продуцирующим АФК, является *фагоцитарная NADPH-оксидаза* (молекулярная масса 240–250 kDa), которая опосредует феномен

Конец ознакомительного фрагмента. Приобрести книгу можно в интернет-магазине «Электронный универс» e-Univers.ru