ПРЕДИСЛОВИЕ

Предисловие к первому изданию

Эта книга написана на основе курса лекций по общей астрофизике, читаемых авторами студентам физического факультета МГУ им. М. В. Ломоносова.

Особенность астрофизики как предмета состоит прежде всего в ее многосторонности и в большой широте охвата изучаемых явлений — от разреженной межпланетной и межзвездной среды до сверхплотного состояния вещества в недрах белых карликов и нейтронных звезд, от тел солнечной системы и ближайшего космоса до всей Вселенной, рассматриваемой как целое. Вторая особенность бурное развитие астрофизики, непрерывное появление новых данных наблюдений, разработка и проверка теоретических схем и гипотез. Это усложняет отбор материала, который может быть включен в учебное пособие. Авторы не стремились рассказать обо всем важном, известном к моменту написания книги, стараясь акцентировать внимание на ключевых вопросах. Каждое астрофизическое явление или объект обладает рядом специфических черт и особенностей, которые часто требуют индивидуального рассмотрения и описания. Одно только изложение феноменологических фактов о звездах или компонентах межзвездной среды может составить предмет отдельной книги.

Предлагаемая книга несколько шире по содержанию, чем традиционные курсы общей астрофизики. В ней делается упор на объяснение основных физических процессов, происходящих в космических объектах и средах. При этом факты, необходимые для понимания того или иного явления, приводятся лишь в минимальном объ-

еме. Книга готовилась в первую очередь для читателей, овладевших знаниями в рамках общего университетского курса физики, и не требует специальных знаний по астрономии. Часть вспомогательного материала из курса общей физики и выводы некоторых формул вынесено в Приложение. При подготовке рукописи мы использовали специализированные издания и монографии, большая часть которых отражена в списке литературы. Мы надеемся, что данная книга послужит введением в современные проблемы астрофизики и поможет читателю ознакомиться с астрофизической картиной мира— в объеме достаточном для дальнейшего углубленного изучения конкретных направлений этой быстроразвивающейся области знания.

Мы приносим искреннюю благодарность нашим коллегам В. А. Батурину, В. К. Конниковой, В. Г. Корнилову, С. А. Ламзину, М. А. Лившицу, А. Д. Чернину и особенно академику А. М. Черепащуку, которые взяли на себя нелегкий труд чтения отдельных глав рукописи и сделали много ценных замечаний. Мы также глубоко признательны В. Н. Семенцову и А. Ю. Кочетковой за помощь при оформлении рукописи, а также другим коллегам, замечания которых мы старались учесть.

Так получилось, что работа над книгой завершилась в 2006 году, в котором исполняется 100 лет со дня рождения замечательного ученого и педагога, нашего учителя, многолетнего заведующего кафедрой астрофизики и звездной астрономии физического факультета МГУ профессора Дмитрия Яковлевича Мартынова. Наша книга продолжает и развивает его замечательный учебник по общей астрофизике, последнее издание которого вышло в 1988 году, и на котором воспитано не одно поколение студентов.

Пусть это будет нашей данью его светлой памяти.

Москва, 2006.

Предисловие ко второму изданию

За несколько лет, прошедших после первого издания этой книги, новые эксперименты и всеволновые наблюдения привели к важным открытиям в наблюдательной космологии, звездной астрофизике, астрофизике высоких энергий, планетной астрономии. Так, за точные измерения и открытие анизотропии реликтового излучения в 2006 году американским астрофизикам Дж. Мазеру и Дж. Смуту была присуждена Нобелевская премия по физике, а в 2011 году Нобелевской премии удостоено открытие ускоренного расширения Вселенной по измерениям далеких сверхновых (С. Перлмуттер, Б. Шмидт и А. Рисс). С бортов космических телескопов и специализированных спутников получена бесценная информация в различных диапазонах длин волн от далекого ИК (космический телескоп «Спитцер») до сверхжесткого гамма (космический телескоп «Ферми»). Наземной установкой «Оже» измерены энергии частиц космических лучей до значений свыше $10^{20}\,$ эВ. Черенковские телескопы установки H.E.S.S. в Намибии регистрируют ТэВ-ные фотоны из центра Галактики, от активных ядер галактик и квазаров и тесных двойных систем с нейтронными звездами. Спутниками «Свифт», «ИНТЕГРАЛ» и «Конус-Винд» зарегистрированы десятки далеких космических гамма-всплесков (вплоть до рекордного для астрофизических объектов красного смещения 8.3 от гаммавсплеска 090423) и мощнейшее мягкое гамма-излучение от магнитаров — нейтронных звезд со сверхсильным магнитным полем напряженностью свыше $10^{14}~\Gamma$ с. Открыты новые типы сверхновых от рекордно ярких, связанных с коллапсом ядер самых массивных звезд, до чрезвычайно слабых, возможно связанных с термоядерными взрывами на поверхности белого карлика (промежуточные объекты между вспышками новых звезд и термоядерными сверхновыми типа Іа). Обнаружены сотни новых экзопланет вокруг звезд, некоторые из которых имеют параметры, близкие к планетам земной группы. Проведены уникальные обзоры всего неба, в первую очередь обзор SDSS (Sloan Digital Sky Survey), давшие фотометрическую и спектральную информацию о миллионах галактик и звезд. Все теснее становятся рамки допустимых моделей темной материи, и появилась надежда на регистрацию гипотетических частиц темной материи в новейших экспериментальных установках (Линейный Адронный Коллайдер в ЦЕРНе). Запущены и планируются новые космические миссии к телам Солнечной системы.

Список достижений астрофизики за последние годы можно продолжать долго. Однако, оставаясь в рамках учебного пособия, мы не ставили целью дать обзор последних открытий — они не изменили общую астрофизическую картину мира. Тем не менее, мы отразили во втором издании книги часть наиболее важных новых достижений астрофизики, без упоминания которых уже нельзя обойтись.

После благожелательной критики многих коллег из различных астрономических учреждений и университетов, мы постарались исправить замеченные опечатки и неточности формулировок, допущенные в первом издании. Мы благодарим всех, кто помог нам в этом деле. Во втором издании значительной переработке подверглись главы 2, 3, 5, 8, 9, 11. В Приложения добавлено несколько новых разделов. Особую благодарность мы приносим коллегам из Санкт-Петербургского университета и лично В. В. Иванову, а также А. С. Расторгуеву, М. В. Сажину, Г. В. Якуниной и другим коллегам из ГАИШ МГУ за замечания к первому изданию. Существенные изменения в главе 3 были внесены после ее внимательного прочтения В. Г. Корниловым и Б. С. Сафоновым, за что мы им приносим глубокую благодарность. Мы также признательны В. С. Бескину, Я. Н. Истомину, С. И. Блинникову, Н. Н. Чугаю за обсуждение физических аспектов многих астрофизических явлений.

Москва, 2011

Авторы благодарят Морченко Е. С. за внимательное прочтение 2-го издания книги и полезные замечания.

Издание 2022 года является 3-м изданием книги, вышедшим в 2015 году, скорректированным с учетом наиболее важных астрофизических достижений за прошедший период времени. Более подробно важнейшие аспекты современной астрономии освещены в монографии «Многоканальная астрономия» под ред. А. М. Черепащука (М.: ДМК Пресс, 2022), которая может быть важным дополнением к данному учебному пособию.

Москва, 2022

ОГЛАВЛЕНИЕ

Глава 1	. Введ	ение	17
1.1.	. Пространственно-временные масштабы в астрофизике		
	1.1.1.	Расстояния	20
	1.1.2.	Характерные времена	24
	1.1.3.	Характерные значения масс	24
	1.1.4.	Солнечные единицы	25
1.2.	Состоя	яние вещества во Вселенной	26
Глава 2	. Излу	чение и поглощение ЭМ волн в среде	29
2.1.	Основ	ные понятия	30
	2.1.1.	«Температурная» шкала электромагнитных волн	30
	2.1.2.	Интенсивность излучения	30
	2.1.3.	Поток излучения. Связь с интенсивностью	32
	2.1.4.	Плотность энергии излучения	34
	2.1.5.	Понятие спектра	34
2.2.	Излуч	ение абсолютно черного тела	34
	2.2.1.	Тепловое излучение	34
	2.2.2.	Понятие термодинамического равновесия	
		и локального термодинамического равновесия .	35
	2.2.3.	Спектр абсолютно черного тела	36
2.3.	Перен	ос излучения в среде и формирование спектра	40
	2.3.1.	Коэффициент излучения	40
	2.3.2.	Коэффициент поглощения и оптическая тол-	
		щина	41
	2.3.3.	Уравнение переноса при наличии поглощения	
		и излучения	43

	2.3.4.	Решение уравнения переноса
		для простейших случаев 45
	2.3.5.	Образование спектральных линий
		в условиях ЛТР
	2.3.6.	Температура астрофизических источников,
		определяемая по их излучению 49
2.4.	Астро	физические примеры спектров 52
2.5.	Основ	вные механизмы поляризации излучения 56
2.6.	Задач	и
Глава 3	. Oco	бенности астрономических наблюдений
	и фи	зические ограничения их возможностей 63
3.1.	Основ	вные задачи наблюдательной астрономии 63
3.2.	Пропу	ускание света земной атмосферой 64
3.3.	«Точе	чные» и «протяженные» источники 66
3.4.	Оптич	неские наблюдения
	3.4.1.	Оптические телескопы 67
	3.4.2.	Приемники излучения 73
	3.4.3.	Видимый диапазон
	3.4.4.	Проблема улучшения
		углового разрешения телескопа
	3.4.5.	Звездные интерферометры
	3.4.6.	Физические ограничения на точность
		фотометрических измерений 82
	3.4.7.	Спектральные наблюдения
3.5.	Радио	растрономические наблюдения
	3.5.1.	Радиотелескопы
		Радиоинтерферометры.
		Метод апертурного синтеза
3.6.	Рентг	еновские телескопы и детекторы 95
3.7.	Поляр	оизационные наблюдения
Глава 4	. Меж	звездная среда 99
4.1.	Основ	вные составляющие и проявления 99
4.2.	Пропу	ускание излучения межзвездной средой 104
4.3.		ческие особенности
	разрех	женной космической среды
	4.3.1.	Запрещенные линии
	4.3.2.	Излучение нейтрального водорода
	4.3.3.	Вмороженность магнитного поля
4.4.	Объем	иный нагрев и охлаждение МЗС

		4.4.1.	Основные механизмы нагрева газа		
		4.4.2.	Основные механизмы охлаждения газа 118		
4	1 .5.	Тепловая неустойчивость МЗС			
4	1.6 .	Ионизованный водород и зоны HII			
4	1 .7.	1 , 1			
4	1 .8.	Космические лучи и синхротронное излучение			
4	1 .9.				
		4.9.1.	Проблема происхождения и ускорения		
			КЛ сверхвысоких энергий		
4	¥.10.	Други	е методы диагностики космической плазмы 144		
4	¥.11.	Задачи	л		
Глан	ва 5.	Звезд	ды 149		
5	5.1.	Общие	е характеристики		
5	5.2.	Образо	ование звезд		
		5.2.1.	Гравитационная неустойчивость		
		5.2.2.	Влияние вращения на сжатие		
		5.2.3.	Влияние магнитного поля на сжатие 157		
5	5.3.	Стадии	и формирования звезды		
5.4. Стационарные звезді		Стаци	онарные звезды		
		5.4.1.	Гидростатическое равновесие		
		5.4.2.	Теорема вириала для звезды		
		5.4.3.	Тепловая устойчивость звезд.		
			Отрицательная теплоемкость		
5	5.5.	Ядерн	ые реакции в звездах		
		5.5.1.	рр-цикл (Г. Бете, 1939)		
		5.5.2.	Проблема солнечных нейтрино		
		5.5.3.	CNO-цикл		
		5.5.4.	О характере движения квантов		
			в недрах Солнца и звезд		
		5.5.5.	Происхождение химических элементов		
			до элементов железного пика		
		5.5.6.	Уравнения внутреннего строения		
			звезд и Солнца		
5	5.6.	Роль д	авления излучения в массивных звездах 181		
	5.7.	Соотн	ошения $M{-}L$ и $M{-}R$ для звезд Г Π		
5	5.8.		феры звезд		
		5.8.1.	Образование спектральных линий 186		
		5.8.2.	Спектральная классификация звезд 189		
		5.8.3.	Непрерывный спектр		

	5.9.	. Солнце как ближайшая звезда		
		5.9.1.	Общие характеристики	193
		5.9.2.	Особенности фотосферы, хромосферы и коро-	
			ны Солнца	198
		5.9.3.	Солнечные вспышки. Активность Солнца	206
		5.9.4.	Гелиосейсмология	209
	5.10.	Задачі	и	212
Гл	ава 6.	. Эвол	юция звезд	216
	6.1.	Эволю	оция звезд после выгорания водорода	216
	6.2.	Вырож	кдение вещества	218
	6.3.	Преде	л Чандрасекара и фундаментальная масса звезды	222
	6.4.	Вырож	кдение вещества в центре у звезд различных масс	223
	6.5.	Роль п	отери массы в эволюции звезды	228
		6.5.1.	Звездный ветер на главной последовательности	228
		6.5.2.	Звездный ветер	
			после главной последовательности.	
			Асимптотическая ветвь гигантов	
			и образование планетарных туманностей	230
	6.6.	Эволю	оция одиночных звезд после	
		главно	ой последовательности: краткий итог	231
	6.7.	Пульс	ации звезд. Цефеиды	234
	6.8.	Проце	ссы образования тяжелых элементов в природе .	239
Гл	ава 7.	. Двой	ные звезды	242
	7.1.	Опред	еление масс двойных звезд. Функция масс	242
	7.2.	Особе	нности эволюции звезд в ТДС	245
		7.2.1.	Приближение Роша и полость Роша	246
		7.2.2.	Перенос масс	248
	7.3.	Стади	и эволюции двойных звезд	251
Гл	ава 8.	План	етные системы	257
	8.1.	Метод	ы исследования и состав солнечной системы	257
	8.2.	Метод	ы обнаружения планет вокруг звезд	270
			стические зависимости экзопланет	
	8.4.	Образ	ование планет и их систем	278
		8.4.1.	Протопланетные диски	278
		8.4.2.	Образование планет солнечной системы	279
Гл	ава 9.	Свер	хновые и остатки сверхновых	283
	9.1.	Нейтр	онизация вещества	283
			Фотодиссоциация	
		9.1.2.	Нейтронизация вещества и УРКА-процессы	284

	9.1.3.	Захват нейтрино и остановка коллапса	286
9.2.	Вспып	ики сверхновых	289
	9.2.1.	Сверхновые II типа	
	9.2.2.	Гиперновые и гамма-всплески	296
	9.2.3.		
	9.2.4.		
	9.2.5.		
		с межзвездной средой	300
Глава 1	0. Комп	актные звезды	
	и их	наблюдательные проявления	306
10.1	. Белые	карлики	307
	10.1.1.	Белые карлики в двойных системах.	
		Катаклизмические переменные и новые звезды .	308
10.2	. Нейтр	онные звезды	310
	10.2.1.	Внутреннее строение НЗ	312
	10.2.2.	Оценки масс НЗ	315
10.3		гва пульсаров	
	10.3.1.	Основные свойства	318
	10.3.2.	Торможение вращения пульсаров	320
10.4	. Рентге	еновские пульсары	325
10.5	. Черны	е дыры	326
10.6	. Эффен	стивность аккреции на компактные звезды	328
10.7	. Эддин	гтоновский предел светимости при аккреции	
	на ком	пактные релятивистские объекты	332
10.8	. Задача	ι	333
Глава 1	1. Галан	стики	335
11.1	. Звездн	ные скопления и наша Галактика	335
11.2	. Основ	ные характеристики галактик	339
11.3	. Структ	гура галактик	345
11.4	. Движе	ние газа и звезд	350
	11.4.1.	Столкновение звезд и время релаксации	350
	11.4.2.	Особенности движения звезд различных под-	
		систем	355
	11.4.3.	Принципы измерения скоростей вращения	
		галактик	357
	11.4.4.	Кривые вращения галактических дисков	361
	11.4.5.	Скорость вращения и круговая скорость	363
	11.4.6.	Связь распределения масс в галактике	
		с кривой вращения	365

11.4.7. Проблема темного гало	3
11.4.8. О гравитационной устойчивости	
звездных дисков)
11.4.9. Дисперсия скоростей и толщина	
галактических дисков	7
11.4.10. Бары галактик	L
11.4.11. Принципы оценки масс Е-галактик	
11.5. Физическая природа спиральной структуры 385	
11.5.1. Спиральные ветви: наблюдаемые свойства 385	j
11.5.2. Два типа спиральных ветвей	3
11.6. Межзвездный газ в галактиках	Ĺ
11.6.1. Холодный газ: нейтральный и молекулярный	
водород	
11.6.2. Области HII в галактиках 402	
11.6.3. Горячий газ и рентгеновское излучение галактив 404	
11.6.4. Магнитные поля	
11.7. Звездообразование в галактиках 408	
11.7.1. Общие сведения	3
11.7.2. Физические процессы,	
управляющие звездообразованием 412	
11.7.3. Волны сжатия	
11.7.4. Гравитационная неустойчивость газового диска 424	
11.8. Ядра галактик	
11.8.1. Общие сведения	
11.8.2. Структура активных ядер	
11.8.3. Сверхмассивные черные дыры 434	
11.8.4. Основные принципы определения масс СМЧД. 437	
11.9. Скопления галактик	
11.9.1. Общие сведения	
11.9.2. Газ в скоплениях галактик	
11.9.3. Оценка массы богатых скоплений 447	
11.9.4. Особенности эволюции галактик в скоплениях . 449	
11.10. Задачи	
Глава 12. Элементы современной космологии 450	
12.1. «Краткий курс» истории космологии XX века	
12.2. Крупномасштабная структура Вселенной	
12.3. Предельно далекие галактики и квазары	
12.4. Космологические модели	
12.4.1. Космологический принцип 466	j

12.5. Однородные и изотропные космологические модели	466
12.5.1. Выбор системы координат	466
12.5.2. Метрика Фридмана-Робертсона-Уокера	469
12.6. Кинематика Вселенной	470
12.6.1. Закон Хаббла	470
12.6.2. Пекулярные скорости галактик	472
12.6.3. Распространение света. Красное смещение	
12.6.4. Угломерное и фотометрическое расстояния	
12.6.5. Хаббловские диаграммы	480
12.6.6. Горизонт частиц	481
12.6.7. Поверхностная яркость и парадокс Ольберса	483
12.7. Динамика Вселенной	484
12.7.1. Эволюция расширения. Критическая плотность	484
12.7.2. Влияние давления	487
12.8. Модели Фридмана с космологической постоянной	
12.9. Горячая Вселенная	495
12.10.Первичный нуклеосинтез («первые три минуты»)	499
12.11.Реликтовое излучение и эпоха рекомбинации	
12.12. Эффект Сюняева – Зельдовича	
12.13. Флуктуации реликтового излучения	
12.14. Трудности классической космологии	
12.14.1.Проблема горизонта (проблема причинности) .	
12.15. Модель инфляционной Вселенной	
12.16. Рост малых возмущений	
12.16.1.Поляризация реликтового излучения	
12.17.Образование крупномасштабной структуры Вселенной	
12.18.Заключение	
Приложение А. Гравитация	522
А.1. Гравитационная энергия	
А.2. Время свободного падения	
А.З. Теорема вириала	525
А.4. Квадрупольная формула для гравитационного	
излучения от двойной звезды	
А.5. Вывод формулы для эпициклической частоты	
Приложение В. Взаимодействие излучения и вещества	532
В.1. Элементарные процессы, ответственные за излучение	
и поглощение света	534
В.1.1. Свободно-свободные переходы	
(электрон в поле протона)	534

	B.1.2.	Свободно-связанные переходы	534
	B.1.3.	Переходы между энергетическими уровнями	534
	B.1.4.	Ионизация	535
	B.1.5.	Рекомбинация	535
B.2.	ТДР и	ЛТР	536
B.3.	Иониз	ационное равновесие	538
	B.3.1.	Локальное термодинамическое равновесие.	
		Формула Саха.	538
	B.3.2.	Корональное приближение	542
	B.3.3.	Фотоионизационное равновесие	545
Прилож	сение С	. Вопросы переноса	548
C.1.	Влиян	ие рассеяния на перенос излучения	548
		Случай чистого рассеяния	
	C.1.2.	Связь числа рассеяний с оптической толщей	549
	C.1.3.	Случай рассеяния и поглощения	551
C.2.	Диффу	узионное приближение и росселандово среднее .	553
Прилож	сение D	. Метрика однородного изотропного	
	прос	гранства	555
-		. Системы единиц и безразмерные числа	557
E.1.	Физич	еские константы	557
E.2.	Безраз	мерные числа	558
Прилож	Приложение F. Звездные величины		
Прилож	сение С	 Солнечное обилие химических элементов 	565
Литература			569
Предметный указатель			571

ВВЕДЕНИЕ

В необычных астрофизических явлениях законы физики предстают перед исследователями в ином ракурсе, более глубоко раскрывая свое содержание.

С. Б. Пикельнер

Астрофизика — наука, занимающаяся исследованием далеких космических объектов и явлений физическими методами. Астрофизика нацелена на создание физической картины окружающего мира, объясняющей наблюдаемые явления, на изучение происхождения и эволюции как отдельных классов астрономических объектов, так и Вселенной как единого целого в рамках известных физических законов.

Поскольку прямые контакты научных приборов с изучаемыми объектами практически исключены, основу астрофизики, как и астрономии в целом, составляют наблюдения, то есть прием (детектирование) и анализ излучения далеких источников. Непосредственные результаты наблюдений, как правило, сводятся к относительным или абсолютным измерениям энергии, приходящей от источника или его отдельных частей, в определенных интервалах спектра. Интерпретация результатов наблюдений базируется на знании механизмов излучения электромагнитных волн и их взаимодействия с веществом.

Исторически астрофизика выделилась в самостоятельное научное направление с появлением в конце XIX века спектрального ана-

лиза, который открыл возможность дистанционного исследования химического состава и физического состояния не только лабораторных, но и астрономических источников света. Наблюдения спектров звезд окончательно доказали, что астрономические тела состоят из атомов известных на Земле элементов, подчиняющихся тем же физическим законам. Химическое «единство» природы особенно наглядно было подтверждено открытием гелия — сначала (по спектру) в атмосфере Солнца, а только затем — в некоторых минералах на Земле.

Современные методы исследования позволяют по спектральным особенностям излучения не только узнать состав, температуру и плотность среды, но и измерить лучевые скорости источников и скорости внутренних движений в них, оценить расстояние до них, и на базе физических теорий выяснить механизм излучения, определить индукцию магнитных полей и многие другие характеристики.

Бурное развитие астрофизики за более чем столетний период ее существования было связано как с быстрым развитием различных направлений классической, квантовой и релятивистской физики с одной стороны, так и со строительством крупных телескопов, появлением принципиально новых приемников излучения и компьютерных методов обработки наблюдений — с другой. Очень важный, революционный скачок в астрофизических исследованиях произошел с началом изучения объектов за пределами оптического диапазона спектра, сначала в радио (конец 30-х годов XX века), а затем, уже с помощью космической техники (60–80-е годы ХХ века), в далеком инфракрасном, далеком УФ, рентгеновском и гамма-диапазонах. «Многокрасочность» Вселенной привела к более глубокому пониманию природы давно известных космических тел, а также открытию новых типов астрономических объектов; природа некоторых из них до сих пор остается малопонятной. Позднее началось развитие и нейтринной астрономии, основанной на регистрации и анализе нейтринного излучения из космоса. С 2015 года началась гравитационно-волновая астрономия.

Важной особенностью астрофизики является то, что она исследует процессы, как правило, не воспроизводимые в лабораториях. К примеру, термоядерные реакции в плазме, удерживаемой от расширения собственным гравитационным полем, — это не экзотический, а самый распространенный источник энергии наблюдаемых звезд. Только в астрофизике исследуются среды с экстремально низ-

кой плотностью — менее 10^{-27} г/см³ (разреженный межгалактический газ), излучение которых, тем не менее, может приниматься благодаря большим объемам, занимаемым ими. Можно отметить также экстремально высокие плотности вещества (от нескольких тысяч г/см 3 в звездах из вырожденного газа до $10^{14} - 10^{15}$ г/см 3 в нейтронных звездах), температуры в миллиарды градусов (внутренние области аккреционных дисков), едва обнаружимые и, наоборот, предельно сильные гравитационные поля, наблюдаемые ультравысокие энергии элементарных частиц, не достижимые даже для строящихся коллайдеров, и даже не излучающую электромагнитных волн и потому невидимую «темную» материю. Все это делает астрофизические исследования неоценимыми для решения фундаментальных физических проблем. Не удивительно, что почти все фундаментальные физические теории - от классической механики и ньютоновской гравитации до теории относительности и физики элементарных частиц — прошли или проходят астрономическую (астрофизическую) проверку.

Очевидно, что астрофизика неотделима от физики, так что резкой границы между ними не существует. Однако она обладает важной особенностью, заключающейся не столько в специфичности космических объектов или в необычных пространственных масштабах изучаемых явлений, сколько в исследовании формирования и эволюции астрономических тел и систем. По словам крупнейшего отечественного астрофизика И. С. Шкловского, «едва ли не основным результатом многолетних исследований астрономических объектов является утверждение о том, что все они эволюционируют».

Основной силой, определяющей характер эволюции астрономических объектов, является гравитация (что связано с их большими массами), которая в физике «земных» явлений, как правило, не имеет решающего значения или воспринимается только как наличие у тел веса. Поэтому в астрофизике очень большое внимание уделяется изучению гравитационного взаимодействия и самогравитации космических тел и сред и той роли, которую они играют в их формировании и эволюции.

Таким образом, физические свойства космических объектов, определяемые по характеру излучения, а также их происхождение и эволюция, связанная прежде всего с гравитацией, — это два основных и взаимосвязанных аспекта современной астрофизики. Именно на их изучение, в первую очередь, нацелен настоящий курс.

1.1. Пространственно-временные масштабы в астрофизике

1.1.1. Расстояния

Расстояние до объекта является одной из основных характеристик, определяемых из астрономических наблюдений. Для измерения расстояний в современной астрофизике в зависимости от рассматриваемой ситуации или задачи используется ряд внесистемных единиц. Это связано с тем, что рассматриваемый диапазон величин различается на десятки порядков. Кратко перечислим основные единицы для измерения расстояний.

Естественной мерой расстояний в Солнечной системе служит астрономическая единица (a. e.); 1 а. е. $\simeq 1.5 \cdot 10^{13} \, \mathrm{cm} \approx 500 \, \mathrm{световыx}$ секунд — это большая полуось земной орбиты. Она была впервые измерена по суточному параллаксу планет. Можно предложить другой способ определения расстояния до Солнца, основанный только на астрономических измерениях — по наблюдению годичной аберрации звезд: из-за конечности скорости света положение любого источника (звезды), измеряемое наблюдателем, движущимся со скоростью v, смещается на угол $\operatorname{tg} \theta \simeq v/c$ в направлении движения. (Этот эффект был открыт астрономом Дж. Брэдли в 1729 г.). Следовательно, за время одного оборота Земли вокруг Солнца (год) любая звезда на небе описывает эллипс, большая полуось которого, выраженная в радианах, есть $\theta = v/c$. Наблюдения дают $\theta = 20.5''$. Отсюда, зная скорость света, находим $v \approx 30$ км/с и, полагая орбиту Земли круговой (на самом деле ее эксцентриситет $e \approx 0.017$), определяем астрономическую единицу. Ввиду малости v/c релятивистские поправки несущественны. Весь вопрос в том, с какой точностью мы измеряем астрономическую единицу. Современный способ оценки а. е. основан на радиолокации астероидов с известными орбитами, близко подходящими к Солнцу, или на точном измерении траекторий космических аппаратов, с последующим использованием закона всемирного тяготения, связывающего ускорение тел с расстоянием до Солнца.

Характерный размер планетной системы — около 40 а. е. Это расстояние примерно соответствует большой полуоси орбит Нептуна и Плутона. Мелкие ледяные тела существуют и на значительно больших расстояниях от Солнца — вплоть до десятков тысяч а. е. Современные крупные телескопы (например, космический телескоп

«Хаббл» или 10-метровый телескоп им. У. Кека) позволяют регистрировать на расстоянии Плутона свет Солнца, отраженный от тел с размерами в несколько десятков километров.

При определении расстояний до звезд Галактики, становится удобнее пользоваться другой единицей — парсеком (пк). Парсек — расстояние, с которого отрезок, равный большой полуоси земной орбиты и расположенный перпендикулярно лучу зрения, виден под углом 1". Из-за годичного движения Земли положение светила, находящегося на расстоянии 1 парсек, будет описывать на небепараллактический эллипс с большой полуосью, равной 1 угловой секунде; например, для светила, расположенного в направлении, нормальном плоскости земной орбиты, т. е. в полюсе эклиптики, это будет окружность с радиусом в 1 секунду дуги. В астрономии это явление называют годичным параллаксом, отсюда и название единицы расстояния — парсек, т. е. параллакс-в-секунду. Поскольку в радианной мере $1'' \approx 1/206265$, находим: 1 парсек = 206265 а. е. $\simeq 3 \cdot 10^{18}$ см. При измерении годичного параллакса светила в секундах дуги, расстояние в парсеках до него определяется по очевидной формуле

$$d(\Pi K) = \frac{1}{\pi''}. (1.1)$$

Расстояния до ближайших звезд — несколько парсек (например, для α Центавра $\pi=0.745''$, т. е. $d=1/0.745\approx 1.34\,\mathrm{nk}$). Поскольку 1 пк $\simeq 3.26$ светового года, свет от α Центавра идет к нам около 4 лет. Прямое определение расстояний до звезд, основанное на измерении их годичного параллакса, ограничивается астрометрической точностью определения положения звезд на небесной сфере. В космическом эксперименте Gaia (2013-) для 1.3 миллиарда звезд до 21 звездной величины достигнута точность измерения параллаксов и собственных движений от микро- до миллисекунд дуги (каталог Gaia DR2).

Для определения расстояний до более далеких объектов используются различные косвенные методы, получившие совокупное название методов установления mкалы pасстояний во Вселенной. В основе многих методов лежит определение фотометрического расстояния от светящегося объекта (например, звезды) по принимаемому потоку излучения F, если светимость (количество энергии, излучаемой за секунду) объекта L известна из других соображений.

Предполагая сферическую симметрию излучающего источника, получаем

$$d = \sqrt{\frac{L}{4\pi F}}. (1.2)$$

Не вдаваясь в детали, отметим один из важнейших методов определения расстояний до звезд и звездных систем — по цефеидам. Цефеиды — переменные звезды старого населения Галактики с массами $3-12\,M_\odot$, переменность блеска которых связана с их радиальными пульсациями, возникающими на определенных этапах эволюции (см. подробнее в главе 6). Для цефеид эмпирически установлена и теоретически обоснована зависимость период—светимость, из которой по наблюдаемому периоду переменности блеска можно определить их абсолютную светимость, и по измеряемому потоку — расстояние в соответствии с формулой (1.2). Цефеиды — довольно яркие звезды, поэтому с их помощью определяют расстояния вплоть до $10-15\,$ миллионов парсек (Мпк), до ближайших галактик.

Расстояние от Солнца до центра Галактики оценивается разными методами примерно в 8 тысяч парсек (кпк). Размер типичной галактики (точнее, той области галактики, в которой наблюдается светящееся вещество — звезды, газ) — 10-20 кпк.

Расстояния до ближайших галактик определяются из наблюдений находящихся в них цефеид и ярчайших звезд некоторых других типов, светимости которых считаются известными. Спутники нашей Галактики — Большое и Малое Магеллановы Облака — расположены на расстоянии 55 кпк; туманность Андромеды (М31) — 780 кпк. Расстояние до центра скопления галактик в Деве, на краю которого располагается наша Галактика, около 16 Мпк. Другое близкое скопление галактик в созвездии Волосы Вероники (т. н. *Coma Cluster*) расположено на расстоянии около 80 Мпк.

Расстояния l до далеких галактик обычно определяют по красному смещению линий в их спектрах $z=(\lambda_o-\lambda_e)/\lambda_e$ (здесь λ_e — лабораторная длина волны света, испущенного далеким космическим источником, λ_o — длина волны света, зарегистрированного земным наблюдателем) с использованием закона Хаббла

$$v = H_0 l, (1.3)$$

где $H_0 \approx 70$ км/(с·Мпк) — современное значение постоянной Хаббла, v — скорость удаления галактики. В пределе малых скоростей ($v \ll c$) $v \approx cz$. Для близких галактик закон Хаббла нарушается

из-за их пекулярных скоростей, а для очень далеких ($\Delta \lambda/\lambda \gtrsim 1$) — понятие расстояния теряет однозначность и зависит от предполагаемой модели расширения Вселенной.

Важный наблюдательный факт, лежащий в основе современной космологии, состоит в однородности Вселенной на больших масштабах. Вселенная становится в среднем однородной и изотропной на характерных расстояниях $\Delta l \gtrsim 100-200$ Мпк. Однородность на масштабах порядка Δl означает, что средняя плотность вещества в ячейках с размером Δl (в объеме Δl^3) одинакова с точностью до случайных флуктуаций для любой выбранной наугад области. Изотропия означает отсутствие выделенных направлений во Вселенной. По современным измерениям, относительные неоднородности температуры реликтового фона не превосходят 10^{-5} .

Если выражать расстояние через промежуток времени, потребовавшийся свету для его преодоления, то объекты с максимальным известным красным смещением ($\Delta\lambda/\lambda\approx5-10$) удалены на расстояние 12–13 миллиардов световых лет. Степень удаленности очень далеких объектов принято характеризовать их красными смещениями без перевода в единицы расстояний, который зависит от принимаемой модели расширения Вселенной и момента времени, к которому эти расстояния должны быть отнесены. Но вплоть до расстояний порядка миллиарда св. лет можно считать выполняющимся условие $z\ll1$, и проблем с неоднозначностью определения физического расстояния не возникает.

В расширяющейся Вселенной расстояние до наиболее удаленных объектов, доступных наблюдениям, часто характеризуют величиной, называемой хаббловским радиусом. Он определяется как произведение современного возраста Вселенной на скорость света и равен ≈ 4000 Мпк. Иногда эту величину условно называют радиусом Вселенной, но по смыслу это лишь размер ее наблюдаемой части.

В астрофизике приходится иметь дело и с весьма малыми расстояниями. Это связано с тем, что основная информация об астрофизических источниках извлекается из измерения потока электромагнитного излучения от различных объектов (кроме электромагнитного излучения в современной астрофизике исследуется также излучение нейтрино и гравитационных волн). Электромагнитное излучение рождается на микроскопическом уровне при квантовых переходах в атомах (связанно—связанные переходы и свободно—связанные переходы), а также при ускоренном движении заряженных частиц в вакууме (тормозное, или свободно—свободное излу-

чение) или в магнитном поле (циклотронное или, в случае релятивистских частиц, синхротронное излучение). Некоторые характерные размеры микрообъектов, известные из курса атомной физики, к которым мы иногда будем в дальнейшем обращаться, приведены в Приложении.

1.1.2. Характерные времена

Приведем примеры некоторых характерных времен, возникающих в различных астрофизических задачах.

Время жизни атома в возбужденном состоянии $\sim 10^{-8}$ с.

Сутки (период обращения Земли вокруг оси) — 24 ч $\sim 9 \cdot 10^4$ с.

Период обращения Земли вокруг Солнца — 1 год $\simeq 3.16 \cdot 10^7 \, \mathrm{c}.$

Период обращения Солнца вокруг центра Галактики $\simeq 230\,{\rm млн.}$ лет.

Время жизни звезды типа Солнца порядка $\eta \Delta M c^2/L_{\odot} \sim 10^{10}$ лет. В этой оценке $\eta \approx 0.007$ — эффективность ядерных реакций превращения водорода в гелий в центре Солнца, $\Delta M \approx 0.4 M_{\odot}$ — доля массы Солнца, перерабатываемой из водорода в гелий, $M_{\odot}=2\cdot 10^{33}$ г и $L_{\odot}\approx 4\cdot 10^{33}$ эрг/с — масса и светимость (количество излучаемой энергии) Солнца.

Современный возраст Вселенной (хаббловский возраст), по порядку величины равный обратному значению постоянной Хаббла, $t_H \simeq 1/H_0 \approx 1.4 \cdot 10^{10}$ лет.

1.1.3. Характерные значения масс

Массы, с которыми имеют дело в астрофизике, также различаются на много порядков.

Массы основных элементарных частиц:

 $m_e pprox 10^{-27} \; {
m r} pprox 511 \; {
m кэВ} - {
m масса}$ электрона,

 $m_p \approx 5/3 \cdot 10^{-24} \, \mathrm{r} \approx 1 \, \mathrm{ГэВ} - \mathrm{масса}$ протона.

 $m_{Pl}=\sqrt{c\hbar/G}\simeq 10^{-5}~{
m f}\approx 10^{19}~{
m ГэВ}-$ планковская масса — максимально возможная масса элементарной частицы в рамках стандартной теории частиц.

Массы звезд: $M_{\odot}\approx 2\cdot 10^{33}$ г — масса Солнца (типичной звезды). Массы стационарных звезд лежат в пределах от ~ 0.1 до $\sim 100 M_{\odot}$. Массы самых больших планет-гигантов типа Юпитера не превышают нескольких тысячных долей M_{\odot} .

Массы галактик: $M_{MW} \approx 10^{11} M_{\odot}$ — совокупная масса звезд и газа Млечного Пути (типичной галактики). Массы барионного ве-

Конец ознакомительного фрагмента. Приобрести книгу можно в интернет-магазине «Электронный универс» e-Univers.ru