
Любителям железных дорог,
больших и маленьких

Содержание

От издательства...11

Предисловие...12

Часть I. ПОГРУЖЕНИЕ В МИР RAILS И ЕГО АБСТРАКЦИЙ.............15

Глава 1. Rails как инструмент для создания веб-приложений................16
Путешествие «клика» через слои абстракции..16

От запросов к абстракциям в коде...17
Rack...20
Rails on Rack...21
Маршрутизация в Rails..25
C означает Controller..26

За пределами HTTP: фоновые задачи..27
О необходимости фоновых задач..27
Фоновые задачи как единицы работы..29
Задачи по расписанию...30

Сердце веб-приложения – база данных...31
Влияние абстракций на производительность базы данных............................31
Абстракции на уровне базы данных..33

Итоги...34
Проверь себя..35
Упражнение...35

Глава 2. Активные модели и записи...36
Обзор Active Record: от работы с базой до всего подряд.......................................36

Объектно-реляционное отображение...37
От отображения к моделированию..41
От моделирования к чему угодно..46

Active Model – секретный ингредиент Active Record...46
Active Model как интерфейс..47
Active Model как спутник Active Record...50
Производительность Active Model и простых Ruby-классов............................53
Active Model для предоставления знакомого Active Record-подобного
интерфейса..54

В поисках всемогущества..55
Итоги...57
Проверь себя..57
Упражнение...57

Содержание   7

Глава 3. Больше адаптеров, меньше связи с реализацией......................58
Active Job как универсальный интерфейс очереди задач.....................................58

Адаптеризация очередей..60
Сериализуй это..62

Адаптеры и плагины в Active Storage..66
Адаптеры и плагины..68

Адаптеры в вашем коде...70
Итоги...73
Проверь себя..73
Упражнение...73

Глава 4. Антипаттерны в Rails?...74
Колбэки, колбэки повсюду...74

Колбэки под контролем (в контроллерах)..75
Колбэки Active Record выходят из-под контроля...79

Озабоченность консёрнами в Rails..86
Разделяем поведение, а не код...88
Консёрны остаются модулями со всеми их недостатками...............................91
Композиция объектов..92

О глобальном и текущем состоянии..97
Текущее «всё подряд»...97

Итоги...102
Проверь себя..103
Упражнение...103

Глава 5. Когда абстракций Rails уже недостаточно..................................104
Проклятие толстых (тонких) контроллеров и тонких (толстых) моделей.......104

От толстых контроллеров к толстым моделям...105
Пример толстого контроллера..106
Рефакторинг в соответствии с принципом тонких контроллеров
и толстых моделей..108
От толстых моделей к сервисам...110

Сервисы общего назначения и специализированные абстракции...................114
Связь между многоуровневой архитектурой и слоями абстракции.................116
Итоги...119
Проверь себя..119

Часть II. ВЫДЕЛЕНИЕ АБСТРАКЦИЙ ИЗ МОДЕЛЕЙ.........................120

Глава 6. Абстракции слоя данных...121
Использование объектов запросов для вынесения (сложных) запросов
из моделей...122

Выделение объектов запросов..124
Скоупы и объекты запросов..128
Объекты запросов общего пользования и Arel..130
Место объектов запросов в многоуровневой архитектуре............................135

8   Содержание

Отделение моделей от хранилища данных с помощью репозиториев............136
Итоги...139
Проверь себя..140

Глава 7. Обработка пользовательского ввода за пределами
моделей..141
Объекты форм: ближе к интерфейсу, дальше от схемы данных........................142

Формы ввода и модели..142
Использование Active Model для абстракции объектов форм.......................151

Объекты фильтров, или Построение запросов на основе
пользовательского ввода...163

Фильтрация в контроллерах...164
Перенос фильтрации на уровень модели..165
Выделение объектов фильтров...166
Сравнение объектов фильтров, объектов форм и объектов запросов..........169

Итоги...170
Проверь себя..170
Упражнение...170

Глава 8. Выделение презентационной логики из моделей....................171
Использование презентеров для отделения моделей от представлений.........171

Оставьте хелперы библиотекам...173
Презентеры и декораторы...174
Презентеры как слой абстракции..179

Сериализаторы как презентеры для вашего API...183
Преобразование модели в JSON...184
Сериализаторы как презентеры для API...185

Итоги...188
Проверь себя..189

Часть III. СЛОИ АБСТРАКЦИЙ НА КАЖДЫЙ ДЕНЬ............................190

Глава 9. Модели и слои авторизации...191
Авторизация, аутентификация и другие аспекты безопасности......................191

Разница между аутентификацией и авторизацией..192
Линии обороны веб-приложения...193

Модели авторизации..194
Безмодельная авторизация...195
Классические модели авторизации...195

Обеспечение контроля доступа, или Необходимость абстракций
авторизации...200

Внедрение политик..201
Формирование авторизационного слоя абстракции......................................202
Авторизация в шаблонах представления...207

Влияние авторизации на производительность..211
Проблема N+1 авторизации на уровне представления..................................211

Содержание   9

Авторизация на основе выгрузки данных..213
Итоги...214
Проверь себя..214
Упражнение...215

Глава 10. Формирование абстрактного слоя уведомлений...................216
От Action Mailer к многоканальной связи с пользователем...............................216

Action Mailer в действии..217
Место рассыльщиков почты в многоуровневой архитектуре.......................218
Не почтой единой, или Добавление других каналов связи............................220

Выделение абстрактного слоя для работы с уведомлениями............................222
Самодельная абстракция...222
Использование сторонних библиотек для организации работы
с уведомлениями..225

Моделирование пользовательских настроек уведомлений...............................232
Битовые атрибуты и объекты-значения...233
Хранилище настроек уведомлений...235
Использование отдельной таблицы для настроек уведомлений..................236

Итоги...236
Проверь себя..237
Упражнения...237

Глава 11. HTML под контролем абстракций..238
V в MVC Rails: шаблоны и хелперы..238

Пользовательский интерфейс без программного интерфейса.....................240
Переиспользование и дизайн-системы..245

Компонентный подход...248
Превращаем фрагменты и хелперы в компоненты..248
Компоненты интерфейса как слой абстракции...251
Компоненты интерфейса без HTML..256
Компоненты как связующее звено между командами...................................257

Итоги...257
Проверь себя..258

Глава 12. Конфигурация как первоклассная сущность
приложения...259
Виды настроек и источников данных конфигурации...259

Файлы, секреты, зашифрованные хранилища и многое другое...................260
Настройки и секреты..263
Окружения приложения и провайдеры данных..265
Многоуровневая архитектура и конфигурация...265

Использование объектов предметной области для упрощения настроек
приложения...266

Отделение кода приложения от источников конфигурации.........................266
Освобождаем кодовую базу от зависимости от окружения...........................270

10   Содержание

Использование классов конфигурации...272
Итоги...276
Проверь себя..277
Упражнение...277

Глава 13. Сквозь слои и дальше...278
Разнообразие инфраструктурного уровня в Rails..278

Инфраструктурные абстракции и реализации..279
Сквозь уровни: логирование и мониторинг...280

Логирование..280
Отслеживание исключений...284
Инструментация...285

Вынесение низкоуровневой реализации в отдельный сервис..........................290
Отпочковываем веб-сокеты от Action Cable с помощью AnyCable...............290
Обработка изображений на лету, но не в Rails...291

Итоги...293
Проверь себя..294

Предметный указатель..295

Библиотеки и паттерны..299

От издательства

Отзывы и пожелания
Мы всегда рады отзывам наших читателей. Расскажите нам, что вы думаете
об этой книге – что понравилось или, может быть, не понравилось. Отзывы
важны для нас, чтобы выпускать книги, которые будут для вас максимально
полезны.

Вы можете написать отзыв на нашем сайте www.dmkpress.com, зайдя на
страницу книги и оставив комментарий в разделе «Отзывы и рецензии».
Также можно послать письмо главному редактору по адресу dmkpress@gmail.
com; при этом укажите название книги в теме письма.

Если вы являетесь экспертом в какой-либо области и заинтересованы в на-
писании новой книги, заполните форму на нашем сайте по адресу http://
dmkpress.com/authors/publish_book/ или напишите в издательство по адресу
dmkpress@gmail.com.

Список опечаток
Хотя мы приняли все возможные меры для того, чтобы обеспечить высо-
кое качество наших текстов, ошибки всё равно случаются. Если вы найдёте
ошибку в одной из наших книг, мы будем очень благодарны, если вы сооб-
щите о ней главному редактору по адресу dmkpress@gmail.com. Сделав это,
вы избавите других читателей от недопонимания и поможете нам улучшить
последующие издания этой книги.

Нарушение авторских прав
Пиратство в интернете по-прежнему остается насущной проблемой. Издатель-
ство «ДМК Пресс» очень серьёзно относится к вопросам защиты авторских прав
и лицензирования. Если вы столкнётесь в интернете с незаконной публикацией
какой-либо из наших книг, пожалуйста, пришлите нам ссылку на интернет-ре-
сурс, чтобы мы могли применить санкции.

Ссылку на подозрительные материалы можно прислать по адресу элект
ронной почты dmkpress@gmail.com.

Мы высоко ценим любую помощь по защите наших авторов, благодаря
которой мы можем предоставлять вам качественные материалы.

http://www.dmkpress.com
mailto:dmkpress@gmail.com
mailto:dmkpress@gmail.com
http://dmkpress.com/authors/publish_book/
http://dmkpress.com/authors/publish_book/
mailto:dmkpress@gmail.com
mailto:dmkpress@gmail.com
mailto:dmkpress@gmail.com

Предисловие

Ruby on Rails является одним из самых эффективных инструментов для раз-
работки веб-приложений. Философия фреймворка, впервые появившего-
ся на свет ещё в 2004 году, направлена на повышение производительности
разработчиков и, как следствие, повышение скорости выпуска продуктовых
релизов. Ruby on Rails – это фулстек-фреймворк (от англ. full-stack – «полный
стек»), предоставляющий всё необходимое для разработки как серверной, так
и клиентской части приложений.

В сердце архитектуры Rails лежит популярный принцип проектирования
программного обеспечения – Model-View-Controller1 (MVC). Данный прин-
цип подразумевает разделение программы на три компонента: модель, от-
вечающая за работу с данными и бизнес-логику; представление, отвечающее
за вывод информации для конечного пользователя; и, наконец, контроллер,
который интерпретирует действия пользователя и может обновлять состоя-
ние модели или представления.

Помимо MVC, другой ключевой особенностью Ruby on Rails является при-
оритет соглашения над конфигурацией, знаменитый «convention-over-con-
figuration» (далее – CoC). Фреймворк минимизирует объём кода и действий,
необходимых для настройки приложения, при условии следования согла-
шениям об именовании. Такой подход позволяет значительно уменьшить
количество решений, которых нужно принимать разработчику.

Вместе MVC и CoC образуют так называемый Путь Rails (The Rails Way) –
идеологию разработки, которая позволяет последователям Пути больше фо-
кусироваться на написании кода, имеющего непосредственное отношение
к его продукту, нежели бороться с технологической сложностью фреймворка
и его компонентов.

Следование Пути Rails помогает очень быстро пройти фазу от идеи до ра-
бочего прототипа или даже минимального продукта, но грозит серьёзными
пробуксовками в дальнейшем. Высокая скорость разработки – это не только
благо, но и риск оказаться в ситуации, когда кодовая база превращается в за-
путанный лабиринт, полный ловушек и тупиков, который с трудом поддаётся
изменениям и поддержке. Данная книга предлагает читателям стратегию
и практические рекомендации по контролю роста сложности разработки
приложений на Ruby on Rails и сохранению кодовой базы в поддерживаемом
состоянии.

В процессе чтения вы познакомитесь с возможностями и принципами,
лежащими в основе Rails, которые помогут вам раскрыть весь потенциал

1	 Модель–представление–контроллер.

Предисловие   13

фреймворка. Затем вы узнаете, как разделять ответственность в коде путём
выделения новых слоёв абстракции, причём делать это так, чтобы не идти
наперекор Пути. Таким образом, вы откроете для себя Расширенный Путь
Rails, подход к проектированию Rails-приложений, одновременно следую
щий философии фреймворка и позволяющий избегать проблемы роста, со-
храняя продуктивность разработки на высоком уровне.

По завершении вы станете лучше ориентироваться в проектировании веб-
приложений с упором на долгосрочную продуктивную разработку, а также
повысите степень владения фреймворком Ruby on Rails и его принципами.

Для кого эта книга
Данная книга будет особенно полезна разработчикам Rails-приложений, ко-
торые уже познали проблемы роста в проекте и ищут эффективные способы
преодоления этих проблем.

Разработчики, которые только начали разрабатывать продукты с Ruby on
Rails или находятся на этапе запуска MVP, также найдут данную книгу по-
лезной – они узнают, какие опасности поджидают их на пути построения
волшебного монолита и как их избежать.

Для эффективной работы с книгой вам потребуется понимание базовых
принципов организации кода Rails-приложений (например, описанных
в официальной документации), а также практический опыт в написании
веб-приложений.

Технические требования
Примеры кода и описание работы фреймворка ориентируются на послед-
ние версии Ruby и Rails. На момент написания данной книги это Ruby 3.4
и Rails 8.0 соответственно. Большинство примеров актуальны и для более
ранних версий.

Примеры кода также доступны в репозитории на GitHub: https://github.
com/PacktPublishing/Layered-Design-for-Ruby-on-Rails-Applications. Все приме-
ры интерактивны, так что не бойтесь экспериментировать с предложенными
идеями.

	 Код на GitHub соответствует последнему изданию английской версии книги и может
незначительно отличаться от кода в русскоязычном издании.

Комментарий к переводу
При работе над русскоязычным изданием у переводчика (по совместитель-
ству автора оригинального текста) возникла непростая задача: органично
вписать обилие англоязычных терминов в адекватный перевод на русском

https://github.com/PacktPublishing/Layered-Design-for-Ruby-on-Rails-Applications
https://github.com/PacktPublishing/Layered-Design-for-Ruby-on-Rails-Applications

14   Предисловие

языке, который не был бы калькой с английского, набором разговорных анг
лицизмов (рука не повернулась написать «вьюха») или мешаниной слов на
двух языках («в этом mailer’е мы определили action…»).

В большинстве случаев автор придерживался существующей литературной
терминологии, а также использовал такие интернет-источники, как, скажем,
словарь проекта Веб-стандарты (https://github.com/web-standards-ru/diction-
ary) и MDN (https://developer.mozilla.org/ru). Оттуда, например, взят вариант
перевода слова callback как «колбэк».

Во всех случаях при первом упоминании переводного термина даётся его
оригинал, а иногда и обоснование выбранного перевода.

Наконец, тональность книги (как, кстати, и содержание) также претер-
пела некоторое изменение в сторону академичности. Например, шутливое
при переводе на русский выражение «What a gem!» («Ай да гем!») пропало
в пользу более лаконичного «Библиотека».

Буду рад вашим комментариям по поводу перевода. Хорошего чтения!

https://github.com/web-standards-ru/dictionary
https://github.com/web-standards-ru/dictionary
https://developer.mozilla.org/ru

Часть I
ПОГРУЖЕНИЕ

В МИР RAILS
И ЕГО АБСТРАКЦИЙ

Первая часть данной книги посвящена самому фреймворку Ruby on Rails.
Вы узнаете об архитектурных паттернах, решениях, лежащих в основе Rails,
а также о концепциях и соглашениях, на которых построен фреймворк. Вы
также познакомитесь с противоречивыми аспектами и ограничениями Ruby
on Rails, которые мы попытаемся разрешить в последующих частях.

Эта часть состоит из следующих глав:
�� главы 1 «Rails как инструмент для создания веб-приложений»;
�� главы 2 «Активные модели и записи»;
�� главы 3 «Больше адаптеров, меньше связи с реализацией»;
�� главы 4 «Антипаттерны в Rails?»;
�� главы 5 «Когда абстракций Rails уже недостаточно».

Глава 1
Rails как инструмент

для создания
веб-приложений

Ruby on Rails является одним из самых популярных инструментов для созда-
ния веб-приложений, большого класса компьютерных программ. В данной
главе мы обсудим, в чём отличие и особенности данного класса программ и как
это влияет на проектирование приложений. Вначале мы поговорим о модели
взаимодействия «запрос–ответ» для HTTP-коммуникации и её связи с много-
уровневой архитектурой, а также о компонентах Rails, отвечающих за работу
с HTTP. Затем мы рассмотрим процессы приложения, которые происходят вне
цикла «запрос–ответ», и, наконец, дойдём до уровня работы с данными.

Мы рассмотрим следующие темы:
�� «Путешествие клика через слои абстракции»;
�� «За пределами HTTP: фоновые задачи»;
�� «Сердце веб-приложения – база данных».

В результате у вас будет более полное понимание основных принципов
построения веб-приложений и того, как они влияют на архитектуру кода на
базе Ruby on Rails.

Путешествие «клика»
через слои абстракции
Основная задача любого веб-приложения – это обработка сетевых запро-
сов. Таким образом, подразумевается передача данных через сеть интернет,
а слово «запрос» указывает на то, что полученные сервером данные должны
быть неким образом обработаны, и клиент должен быть проинформирован
о результате этой обработки.

 Путешествие «клика» через слои абстракции   17

Рассмотрим, например, такое повседневное действие, как переход по
ссылке на странице в браузере. Всего лишь один «клик» вызывает длин-
ную цепочку операций, от определения IP-адреса по доменному имени до
отображения новой страницы пользователю. Для современных приложений
цепочка удлиняется ещё за счёт наличия промежуточных серверов (прокси,
балансировщики нагрузки, CDN и т. д.). Для целей данной главы следующая,
упрощённая схема путешествия «клика» будет достаточной.

Веб-браузер Веб-серверОС Rack Rails

Поиск
в локальном
кеше gethostbyname

IP-адрес

GET HTTP/1.1
env

Rails.application.routes.call(env)

[200, {}, "hello"]
HTTP/1.1 200 OK

Рис. 1.1   Упрощённая схема путешествия «клика»

Часть этого путешествия, имеющая отношение к Rails, начинается в веб-
сервере, например Puma (https://github.com/puma/puma). Веб-сервер отвечает
за непосредственное обслуживание сетевых соединений, трансформацию
HTTP в понятный для Ruby приложений формат, вызов кода Rails приложе-
ния, а затем отправку HTTP-ответа.

Модели клиент-серверного взаимодействия
Веб-приложения могут использовать различные модели клиент-серверного взаи-
модействия, не только «запрос–ответ». Асинхронное взаимодействие (как прави-
ло, поверх протокола WebSockets) также популярно в Rails-приложениях, особенно
с включением в стек по умолчанию технологии Hotwire (https://hotwired.dev/). Одна-
ко, как правило, альтернативные варианты общения между клиентом и сервером
являются второстепенными, в то время как схема «запрос–ответ» остаётся основ-
ной. Поэтому в данной книге мы будем рассматривать только её.

От запросов к абстракциям в коде
Жизненный цикл веб-приложения состоит из начальной загрузки (настройка
и инициализация компонентов) и фазы обработки запросов.

Во время фазы обработки запросов приложение выступает в роли ис-
полнителя множества независимых единиц работы, которые из себя пред-

https://github.com/puma/puma
https://hotwired.dev/

18   Rails как инструмент для создания веб-приложений

ставляют сетевые запросы. Независимость в данном случае означает, что
обработка каждого конкретного запроса с точки зрения кода является авто-
номным процессом, не зависящим от остальных запросов, происходивших
до или выполняющихся одновременно с текущим. Отсюда также следует, что
использование общего состояния при обработке запросов сведено к мини-
муму. В контексте Ruby это означает, что в процессе обработки запроса мы
создаём множество объектов, время жизни которых не выходит за границы
запроса.

Обработка сетевых запросов как независимых единиц работы позволя-
ет интерпретировать роль веб-сервера как работу конвейерной линии: мы
кладём исходный материал (данные запроса) на ленту, по которой он про-
ходит через множество станков, а на выходе мы получаем изделие в упаковке
(ответ клиенту). Эффективность работы линии зависит от того, насколько
грамотно мы разбили весь процесс сборки на этапы, какие именно станки
мы поставили.

Переходя обратно от инженерии реального мира к миру нулей и единиц,
мы можем сказать, что станками при проектировании сборочных линий веб-
приложений будут являться слои абстракции. Именно через них проходит
запрос, формируя ответ. Эффективность же определяется тем, насколько
выделенные нами слои абстракции помогают в написании и поддержке кода.

Но что вообще такое хорошая абстракция? Ответ на этот вопрос мы будем
формировать на протяжении всей книги. Тем не менее уже сейчас мы можем
сформулировать некоторые базовые свойства.

�� Во-первых, мы хотим, чтобы абстракция отвечала принципу един-
ственной ответственности. При этом мы допускаем, чтобы эта от-
ветственность была достаточно широкой (т. е. никаких ограничений
по числу публичных методов и прочих количественных характерис
тик – они имеют мало общего с дизайном ПО). В то же время мы будем
стремиться к тому, чтобы ответственности разных слоёв абстракции не
пересекались, то есть будем также следовать принципу разделения
ответственности.

�� Во-вторых, слои должны быть слабо связаны между собой и не должны
иметь циклических или обратных зависимостей. Если мы представим
слои как стопку тетрадей, которые мы прошиваем ниткой так, как про-
исходит через них обработка сетевого запроса, игла должна делать
лишь одно движение вниз, а затем одно вверх.

�� В-третьих, абстракции должны служить средством инкапсуляции,
отделять интерфейс от реализации. Именно выделение общего ин-
терфейса является самым сложным в формировании хорошего слоя
абстракции, не стоит игнорировать эту сложность и пытаться «срезать
углы» – усилия, потраченные на нахождение хорошего интерфейса,
окупятся с лихвой.

 Путешествие «клика» через слои абстракции   19

�� В-четвёртых, абстракции должны быть спроектированы так, чтобы их
можно было тестировать в изоляции. Как правило, это свойство сле-
дует само собой из предыдущих, но я бы хотел акцентировать на нём
особое внимание: зачастую именно фокус на тестируемости помогает
спроектировать хороший интерфейс для абстракции.

С точки зрения разработчика, абстракция хороша, если у неё чёткий и по-
нятный интерфейс, она помогает решать определённый класс задач, код,
использующий эту абстракцию, удобно изменять, тестировать и диагности-
ровать в нём ошибки. «Чёткий и понятный» интерфейс подразумевает отсут-
ствие лишней когнитивной нагрузки на разработчика; другими словами, это
интуитивно понятный интерфейс, или простой. Проектирование простых
интерфейсов – это довольно сложная задача; именно поэтому часто можно
слышать мнение, что внедрение новых абстракций в кодовую базу чаще
усложняет поддержку, нежели облегчает её. Цель данной книги – как раз
научить вас избегать этой ловушки и научиться выделять из кодовой базы
действительно хорошие абстракции.

Ещё один вопрос, который хотелось бы обсудить сразу: а сколько слоёв
абстракции было бы неплохо иметь? Здесь, как вы, наверное, догадались,
нет однозначного ответа.

Обратимся снова к аналогии с конвейером. Число этапов (станков) растёт
по мере того, как усложняется технологический процесс. В некоторых слу-
чаях разбиение одного, многозадачного этапа на несколько более простых
позволяет ускорить процесс сборки. Аналогично и число слоёв абстракции,
как правило, растёт с развитием проекта и усложнением бизнес-логики.
В реальном мире эффективность конвейера измеряется скоростью сборки
изделий; в цифровом – скоростью выпуска новых релизов, отвечающих тре-
бованиям конечных пользователей. Скорость выпуска релизов зависит от
большого числа факторов, многие из которых не имеют никакого отношения
к коду. Мы всё же можем спроецировать этот показатель на код, используя
такую характеристику, как поддерживаемость – насколько трудозатратно
внедрение нового функционала и поддержка существующего.

Увеличивается ли поддерживаемость кода с добавлением каждого ново-
го слоя абстракции? Конечно, нет. Разве кто-то проектирует конвейер таким
образом, что закручивание каждой отдельной гайки выносится в отдельный
шаг? А имеет ли смысл внедрять новый слой абстракции в код только ради уве-
личения числа слоёв? Этими риторическими вопросами предлагаю закончить
тему абстрактных веб-приложений (и конвейеров) и перейти к Ruby on Rails.

Rails предлагает три основных слоя абстракции из коробки: контроллеры,
модели и представления1. (Оставим за скобками вопрос о том, можно ли
их считать хорошими согласно критериям, сформированным выше.) Такое

1	 В разговорном русском языке чаще используется «вьюхи».

20   Rails как инструмент для создания веб-приложений

небольшое количество абстракций благоприятно влияет на скорость разра-
ботки на старте – всего три места для добавления нового кода (представьте,
если бы у нас сразу был десяток слоёв абстракции, как у взрослых приложе-
ний). В этом и есть квинтэссенция Пути Rails. В книге мы рассмотрим, как
этот путь расширять, то есть как постепенно вводить новые слои абстракции
в код, сохраняя фокус на разработке продукта.

Прежде чем расширять Путь Rails, нам необходимо получше разобраться
в нём самом.

Rack
Rack (https://github.com/rack/rack) – это компонент, который отвечает за пре-
образование сырых HTTP-данных в понятный Ruby-программам формат
(и в обратную сторону). Более точно, Rack предоставляет абстрактный ин-
терфейс, описывающий две самые главные сущности HTTP-взаимодействия:
запрос и ответ.

Rack также предлагает универсальную схему интеграции между веб-сер
верами (такими как Puma и Unicorn) и Ruby-приложениями. Используя код,
мы можем представить эту схему следующим образом:

request_env = { "HTTP_HOST" => "www.example.com", ... }
response = application.call(request_env)
[status, headers, body_iterator] in response

Данные HTTP-запроса представлены как объект класса Hash (далее мы
будем для краткости такие объекты называть «хеш»). Данный хеш содержит
переменные запроса, включающие в себя HTTP-заголовки и специфичные для
Rack свойства (например, rack.input для чтения тела запроса). Интерфейс
и терминология уходят корнями в эпоху CGI-серверов, когда данные запроса
передавались через переменные окружения в процесс-обработчик.

Common Gateway Interface (CGI)
Common Gateway Interface (https://www.w3.org/CGI, «общий интерфейс шлюза») – это
одна из первых попыток стандартизировать интерфейс взаимодействия между веб-
серверами приложения. Согласно данному интерфейсу, совместимое приложение
обязано считывать заголовки запроса из переменных окружения, а тело запроса –
из стандартного устройства ввода (STDIN); ответ на запрос, в свою очередь, должен
быть записан в стандартное устройство вывода (STDOUT). При этом для обработки
каждого запроса CGI сервер запускает отдельный процесс приложения – непозволи-
тельная роскошь по современным меркам. Впоследствии возник стандарт FastCGI,
который позволил использовать запущенный процесс приложения многократно.

Для совместимости с Rack от приложения требуется только одно – реа-
лизовать метод #call, принимающий на вход хеш с данными запроса. Rack
ожидает в качестве возвращаемого значения массив (Array) из трёх элемен-

https://github.com/rack/rack
https://www.w3.org/CGI

Конец ознакомительного фрагмента.
Приобрести книгу можно

в интернет-магазине
«Электронный универс»

e-Univers.ru

https://e-univers.ru/catalog/T0016963/

	От издательства
	Предисловие
	Часть I. Погружение в мир Rails и его абстракций
	Глава 1. Rails как инструмент для создания веб-приложений
	Путешествие «клика» через слои абстракции
	От запросов к абстракциям в коде
	Rack
	Rails on Rack
	Маршрутизация в Rails
	C означает Controller

	За пределами HTTP: фоновые задачи
	О необходимости фоновых задач
	Фоновые задачи как единицы работы
	Задачи по расписанию

	Сердце веб-приложения – база данных
	Влияние абстракций на производительность базы данных
	Абстракции на уровне базы данных

	Итоги
	Проверь себя
	Упражнение

	Глава 2. Активные модели и записи
	Обзор Active Record: от работы с базой до всего подряд
	Объектно-реляционное отображение
	От отображения к моделированию
	От моделирования к чему угодно

	Active Model – секретный ингредиент Active Record
	Active Model как интерфейс
	Active Model как спутник Active Record
	Производительность Active Model и простых Ruby-классов
	Active Model для предоставления знакомого Active Record-подобного интерфейса

	В поисках всемогущества
	Итоги
	Проверь себя
	Упражнение

	Глава 3. Больше адаптеров, меньше связи с реализацией
	Active Job как универсальный интерфейс очереди задач
	Адаптеризация очередей
	Сериализуй это

	Адаптеры и плагины в Active Storage
	Адаптеры и плагины

	Адаптеры в вашем коде
	Итоги
	Проверь себя
	Упражнение

	Глава 4. Антипаттерны в Rails?
	Колбэки, колбэки повсюду
	Колбэки под контролем (в контроллерах)
	Колбэки Active Record выходят из-под контроля

	Озабоченность консёрнами в Rails
	Разделяем поведение, а не код
	Консёрны остаются модулями со всеми их недостатками
	Композиция объектов

	О глобальном и текущем состоянии
	Текущее «всё подряд»

	Итоги
	Проверь себя
	Упражнение

	Глава 5. Когда абстракций Rails уже недостаточно
	Проклятие толстых (тонких) контроллеров и тонких (толстых) моделей
	От толстых контроллеров к толстым моделям
	Пример толстого контроллера
	Рефакторинг в соответствии с принципом тонких контроллеров и толстых моделей
	От толстых моделей к сервисам

	Сервисы общего назначения и специализированные абстракции
	Связь между многоуровневой архитектурой и слоями абстракции
	Итоги
	Проверь себя

	Часть II. Выделение абстракций из моделей
	Глава 6. Абстракции слоя данных
	Использование объектов запросов для вынесения (сложных) запросов из моделей
	Выделение объектов запросов
	Скоупы и объекты запросов
	Объекты запросов общего пользования и Arel
	Место объектов запросов в многоуровневой архитектуре

	Отделение моделей от хранилища данных с помощью репозиториев
	Итоги
	Проверь себя

	Глава 7. Обработка пользовательского ввода за пределами моделей
	Объекты форм: ближе к интерфейсу, дальше от схемы данных
	Формы ввода и модели
	Использование Active Model для абстракции объектов форм

	Объекты фильтров, или Построение запросов на основе пользовательского ввода
	Фильтрация в контроллерах
	Перенос фильтрации на уровень модели
	Выделение объектов фильтров
	Сравнение объектов фильтров, объектов форм и объектов запросов

	Итоги
	Проверь себя
	Упражнение

	Глава 8. Выделение презентационной логики из моделей
	Использование презентеров для отделения моделей от представлений
	Оставьте хелперы библиотекам
	Презентеры и декораторы
	Презентеры как слой абстракции

	Сериализаторы как презентеры для вашего API
	Преобразование модели в JSON
	Сериализаторы как презентеры для API

	Итоги
	Проверь себя

	Часть III. Слои абстракций на каждый день
	Глава 9. Модели и слои авторизации
	Авторизация, аутентификация и другие аспекты безопасности
	Разница между аутентификацией и авторизацией
	Линии обороны веб-приложения

	Модели авторизации
	Безмодельная авторизация
	Классические модели авторизации

	Обеспечение контроля доступа, или Необходимость абстракций авторизации
	Внедрение политик
	Формирование авторизационного слоя абстракции
	Авторизация в шаблонах представления

	Влияние авторизации на производительность
	Проблема N+1 авторизации на уровне представления
	Авторизация на основе выгрузки данных

	Итоги
	Проверь себя
	Упражнение

	Глава 10. Формирование абстрактного слоя уведомлений
	От Action Mailer к многоканальной связи с пользователем
	Action Mailer в действии
	Место рассыльщиков почты в многоуровневой архитектуре
	Не почтой единой, или Добавление других каналов связи

	Выделение абстрактного слоя для работы с уведомлениями
	Самодельная абстракция
	Использование сторонних библиотек для организации работы с уведомлениями

	Моделирование пользовательских настроек уведомлений
	Битовые атрибуты и объекты-значения
	Хранилище настроек уведомлений
	Использование отдельной таблицы для настроек уведомлений

	Итоги
	Проверь себя
	Упражнения

	Глава 11. HTML под контролем абстракций
	V в MVC Rails: шаблоны и хелперы
	Пользовательский интерфейс без программного интерфейса
	Переиспользование и дизайн-системы

	Компонентный подход
	Превращаем фрагменты и хелперы в компоненты
	Компоненты интерфейса как слой абстракции
	Компоненты интерфейса без HTML
	Компоненты как связующее звено между командами

	Итоги
	Проверь себя

	Глава 12. Конфигурация как первоклассная сущность приложения
	Виды настроек и источников данных конфигурации
	Файлы, секреты, зашифрованные хранилища и многое другое
	Настройки и секреты
	Окружения приложения и провайдеры данных
	Многоуровневая архитектура и конфигурация

	Использование объектов предметной области для упрощения настроек приложения
	Отделение кода приложения от источников конфигурации
	Освобождаем кодовую базу от зависимости от окружения
	Использование классов конфигурации

	Итоги
	Проверь себя
	Упражнение

	Глава 13. Сквозь слои и дальше
	Разнообразие инфраструктурного уровня в Rails
	Инфраструктурные абстракции и реализации

	Сквозь уровни: логирование и мониторинг
	Логирование
	Отслеживание исключений
	Инструментация

	Вынесение низкоуровневой реализации в отдельный сервис
	Отпочковываем веб-сокеты от Action Cable с помощью AnyCable
	Обработка изображений на лету, но не в Rails

	Итоги
	Проверь себя

	Предметный указатель
	Библиотеки и паттерны

