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Предисловие

Ruby on Rails является одним из самых эффективных инструментов для раз-
работки веб-приложений. Философия фреймворка, впервые появившего-
ся на свет ещё в 2004 году, направлена на повышение производительности 
разработчиков и, как следствие, повышение скорости выпуска продуктовых 
релизов. Ruby on Rails – это фулстек-фреймворк (от англ. full-stack – «полный 
стек»), предоставляющий всё необходимое для разработки как серверной, так 
и клиентской части приложений. 

В сердце архитектуры Rails лежит популярный принцип проектирования 
программного обеспечения – Model-View-Controller1 (MVC). Данный прин-
цип подразумевает разделение программы на три компонента: модель, от-
вечающая за работу с данными и бизнес-логику; представление, отвечающее 
за вывод информации для конечного пользователя; и, наконец, контроллер, 
который интерпретирует действия пользователя и может обновлять состоя-
ние модели или представления.

Помимо MVC, другой ключевой особенностью Ruby on Rails является при-
оритет соглашения над конфигурацией, знаменитый «convention-over-con-
figuration» (далее – CoC). Фреймворк минимизирует объём кода и действий, 
необходимых для настройки приложения, при условии следования согла-
шениям об именовании. Такой подход позволяет значительно уменьшить 
количество решений, которых нужно принимать разработчику.

Вместе MVC и CoC образуют так называемый Путь Rails (The Rails Way) – 
идеологию разработки, которая позволяет последователям Пути больше фо-
кусироваться на написании кода, имеющего непосредственное отношение 
к его продукту, нежели бороться с технологической сложностью фреймворка 
и его компонентов.

Следование Пути Rails помогает очень быстро пройти фазу от идеи до ра-
бочего прототипа или даже минимального продукта, но грозит серьёзными 
пробуксовками в дальнейшем. Высокая скорость разработки – это не только 
благо, но и риск оказаться в ситуации, когда кодовая база превращается в за-
путанный лабиринт, полный ловушек и тупиков, который с трудом поддаётся 
изменениям и  поддержке. Данная книга предлагает читателям стратегию 
и  практические рекомендации по контролю роста сложности разработки 
приложений на Ruby on Rails и сохранению кодовой базы в поддерживаемом 
состоянии.

В процессе чтения вы познакомитесь с  возможностями и  принципами, 
лежащими в  основе Rails, которые помогут вам раскрыть весь потенциал 

1	 Модель–представление–контроллер.
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фреймворка. Затем вы узнаете, как разделять ответственность в коде путём 
выделения новых слоёв абстракции, причём делать это так, чтобы не идти 
наперекор Пути. Таким образом, вы откроете для себя Расширенный Путь 
Rails, подход к проектированию Rails-приложений, одновременно следую
щий философии фреймворка и позволяющий избегать проблемы роста, со-
храняя продуктивность разработки на высоком уровне.

По завершении вы станете лучше ориентироваться в проектировании веб-
приложений с упором на долгосрочную продуктивную разработку, а также 
повысите степень владения фреймворком Ruby on Rails и его принципами.

Для кого эта книга
Данная книга будет особенно полезна разработчикам Rails-приложений, ко-
торые уже познали проблемы роста в проекте и ищут эффективные способы 
преодоления этих проблем.

Разработчики, которые только начали разрабатывать продукты с Ruby on 
Rails или находятся на этапе запуска MVP, также найдут данную книгу по-
лезной – они узнают, какие опасности поджидают их на пути построения 
волшебного монолита и как их избежать.

Для эффективной работы с книгой вам потребуется понимание базовых 
принципов организации кода Rails-приложений (например, описанных 
в  официальной документации), а также практический опыт в  написании 
веб-приложений.

Технические требования
Примеры кода и  описание работы фреймворка ориентируются на послед-
ние версии Ruby и Rails. На момент написания данной книги это Ruby 3.4 
и  Rails  8.0 соответственно. Большинство примеров актуальны и для более 
ранних версий.

Примеры кода также доступны в  репозитории на GitHub: https://github.
com/PacktPublishing/Layered-Design-for-Ruby-on-Rails-Applications. Все приме-
ры интерактивны, так что не бойтесь экспериментировать с предложенными 
идеями.

	 Код на GitHub соответствует последнему изданию английской версии книги и может 
незначительно отличаться от кода в русскоязычном издании.

Комментарий к переводу
При работе над русскоязычным изданием у переводчика (по совместитель-
ству автора оригинального текста) возникла непростая задача: органично 
вписать обилие англоязычных терминов в адекватный перевод на русском 

https://github.com/PacktPublishing/Layered-Design-for-Ruby-on-Rails-Applications
https://github.com/PacktPublishing/Layered-Design-for-Ruby-on-Rails-Applications
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языке, который не был бы калькой с английского, набором разговорных анг
лицизмов (рука не повернулась написать «вьюха») или мешаниной слов на 
двух языках («в этом mailer’е мы определили action…»).

В большинстве случаев автор придерживался существующей литературной 
терминологии, а также использовал такие интернет-источники, как, скажем, 
словарь проекта Веб-стандарты (https://github.com/web-standards-ru/diction-
ary) и MDN (https://developer.mozilla.org/ru). Оттуда, например, взят вариант 
перевода слова callback как «колбэк».

Во всех случаях при первом упоминании переводного термина даётся его 
оригинал, а иногда и обоснование выбранного перевода.

Наконец, тональность книги (как, кстати, и  содержание) также претер-
пела некоторое изменение в сторону академичности. Например, шутливое 
при переводе на русский выражение «What a gem!» («Ай да гем!») пропало 
в пользу более лаконичного «Библиотека».

Буду рад вашим комментариям по поводу перевода. Хорошего чтения!

https://github.com/web-standards-ru/dictionary
https://github.com/web-standards-ru/dictionary
https://developer.mozilla.org/ru


Часть I
ПОГРУЖЕНИЕ 

В МИР RAILS 
И ЕГО АБСТРАКЦИЙ

Первая часть данной книги посвящена самому фреймворку Ruby on Rails. 
Вы узнаете об архитектурных паттернах, решениях, лежащих в основе Rails, 
а также о концепциях и соглашениях, на которых построен фреймворк. Вы 
также познакомитесь с противоречивыми аспектами и ограничениями Ruby 
on Rails, которые мы попытаемся разрешить в последующих частях.

Эта часть состоит из следующих глав:
�� главы 1 «Rails как инструмент для создания веб-приложений»;
�� главы 2 «Активные модели и записи»;
�� главы 3 «Больше адаптеров, меньше связи с реализацией»;
�� главы 4 «Антипаттерны в Rails?»;
�� главы 5 «Когда абстракций Rails уже недостаточно».



Глава 1
Rails как инструмент 

для создания  
веб-приложений

Ruby on Rails является одним из самых популярных инструментов для созда-
ния веб-приложений, большого класса компьютерных программ. В данной 
главе мы обсудим, в чём отличие и особенности данного класса программ и как 
это влияет на проектирование приложений. Вначале мы поговорим о модели 
взаимодействия «запрос–ответ» для HTTP-коммуникации и её связи с много-
уровневой архитектурой, а также о компонентах Rails, отвечающих за работу 
с HTTP. Затем мы рассмотрим процессы приложения, которые происходят вне 
цикла «запрос–ответ», и, наконец, дойдём до уровня работы с данными.

Мы рассмотрим следующие темы:
�� «Путешествие клика через слои абстракции»;
�� «За пределами HTTP: фоновые задачи»;
�� «Сердце веб-приложения – база данных».

В результате у  вас будет более полное понимание основных принципов 
построения веб-приложений и того, как они влияют на архитектуру кода на 
базе Ruby on Rails.

Путешествие «клика» 
через слои абстракции
Основная задача любого веб-приложения – это обработка сетевых запро-
сов. Таким образом, подразумевается передача данных через сеть интернет, 
а слово «запрос» указывает на то, что полученные сервером данные должны 
быть неким образом обработаны, и клиент должен быть проинформирован 
о результате этой обработки.
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Рассмотрим, например, такое повседневное действие, как переход по 
ссылке на странице в  браузере. Всего лишь один «клик» вызывает длин-
ную цепочку операций, от определения IP-адреса по доменному имени до 
отображения новой страницы пользователю. Для современных приложений 
цепочка удлиняется ещё за счёт наличия промежуточных серверов (прокси, 
балансировщики нагрузки, CDN и т. д.). Для целей данной главы следующая, 
упрощённая схема путешествия «клика» будет достаточной.

Веб-браузер Веб-серверОС Rack Rails

Поиск 
в локальном 
кеше gethostbyname

IP-адрес

GET HTTP/1.1
env

Rails.application.routes.call(env)

[200, {}, "hello"]
HTTP/1.1 200 OK

Рис. 1.1   Упрощённая схема путешествия «клика»

Часть этого путешествия, имеющая отношение к Rails, начинается в веб-
сервере, например Puma (https://github.com/puma/puma). Веб-сервер отвечает 
за непосредственное обслуживание сетевых соединений, трансформацию 
HTTP в понятный для Ruby приложений формат, вызов кода Rails приложе-
ния, а затем отправку HTTP-ответа.

Модели клиент-серверного взаимодействия
Веб-приложения могут использовать различные модели клиент-серверного взаи-
модействия, не только «запрос–ответ». Асинхронное взаимодействие (как прави-
ло, поверх протокола WebSockets) также популярно в Rails-приложениях, особенно 
с включением в стек по умолчанию технологии Hotwire (https://hotwired.dev/). Одна-
ко, как правило, альтернативные варианты общения между клиентом и сервером 
являются второстепенными, в то время как схема «запрос–ответ» остаётся основ-
ной. Поэтому в данной книге мы будем рассматривать только её.

От запросов к абстракциям в коде
Жизненный цикл веб-приложения состоит из начальной загрузки (настройка 
и инициализация компонентов) и фазы обработки запросов.

Во время фазы обработки запросов приложение выступает в  роли ис-
полнителя множества независимых единиц работы, которые из себя пред-

https://github.com/puma/puma
https://hotwired.dev/
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ставляют сетевые запросы. Независимость в данном случае означает, что 
обработка каждого конкретного запроса с точки зрения кода является авто-
номным процессом, не зависящим от остальных запросов, происходивших 
до или выполняющихся одновременно с текущим. Отсюда также следует, что 
использование общего состояния при обработке запросов сведено к мини-
муму. В контексте Ruby это означает, что в процессе обработки запроса мы 
создаём множество объектов, время жизни которых не выходит за границы 
запроса. 

Обработка сетевых запросов как независимых единиц работы позволя-
ет интерпретировать роль веб-сервера как работу конвейерной линии: мы 
кладём исходный материал (данные запроса) на ленту, по которой он про-
ходит через множество станков, а на выходе мы получаем изделие в упаковке 
(ответ клиенту). Эффективность работы линии зависит от того, насколько 
грамотно мы разбили весь процесс сборки на этапы, какие именно станки 
мы поставили. 

Переходя обратно от инженерии реального мира к миру нулей и единиц, 
мы можем сказать, что станками при проектировании сборочных линий веб-
приложений будут являться слои абстракции. Именно через них проходит 
запрос, формируя ответ. Эффективность же определяется тем, насколько 
выделенные нами слои абстракции помогают в написании и поддержке кода.

Но что вообще такое хорошая абстракция? Ответ на этот вопрос мы будем 
формировать на протяжении всей книги. Тем не менее уже сейчас мы можем 
сформулировать некоторые базовые свойства.

�� Во-первых, мы хотим, чтобы абстракция отвечала принципу един-
ственной ответственности. При этом мы допускаем, чтобы эта от-
ветственность была достаточно широкой (т.  е. никаких ограничений 
по числу публичных методов и  прочих количественных характерис
тик – они имеют мало общего с дизайном ПО). В то же время мы будем 
стремиться к тому, чтобы ответственности разных слоёв абстракции не 
пересекались, то есть будем также следовать принципу разделения 
ответственности.

�� Во-вторых, слои должны быть слабо связаны между собой и не должны 
иметь циклических или обратных зависимостей. Если мы представим 
слои как стопку тетрадей, которые мы прошиваем ниткой так, как про-
исходит через них обработка сетевого запроса, игла должна делать 
лишь одно движение вниз, а затем одно вверх.

�� В-третьих, абстракции должны служить средством инкапсуляции, 
отделять интерфейс от реализации. Именно выделение общего ин-
терфейса является самым сложным в  формировании хорошего слоя 
абстракции, не стоит игнорировать эту сложность и пытаться «срезать 
углы» – усилия, потраченные на нахождение хорошего интерфейса, 
окупятся с лихвой.
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�� В-четвёртых, абстракции должны быть спроектированы так, чтобы их 
можно было тестировать в изоляции. Как правило, это свойство сле-
дует само собой из предыдущих, но я бы хотел акцентировать на нём 
особое внимание: зачастую именно фокус на тестируемости помогает 
спроектировать хороший интерфейс для абстракции. 

С точки зрения разработчика, абстракция хороша, если у неё чёткий и по-
нятный интерфейс, она помогает решать определённый класс задач, код, 
использующий эту абстракцию, удобно изменять, тестировать и диагности-
ровать в нём ошибки. «Чёткий и понятный» интерфейс подразумевает отсут-
ствие лишней когнитивной нагрузки на разработчика; другими словами, это 
интуитивно понятный интерфейс, или простой. Проектирование простых 
интерфейсов – это довольно сложная задача; именно поэтому часто можно 
слышать мнение, что внедрение новых абстракций в  кодовую базу чаще 
усложняет поддержку, нежели облегчает её. Цель данной книги – как раз 
научить вас избегать этой ловушки и научиться выделять из кодовой базы 
действительно хорошие абстракции.

Ещё один вопрос, который хотелось бы обсудить сразу: а  сколько слоёв 
абстракции было бы неплохо иметь? Здесь, как вы, наверное, догадались, 
нет однозначного ответа.

Обратимся снова к аналогии с конвейером. Число этапов (станков) растёт 
по мере того, как усложняется технологический процесс. В некоторых слу-
чаях разбиение одного, многозадачного этапа на несколько более простых 
позволяет ускорить процесс сборки. Аналогично и число слоёв абстракции, 
как правило, растёт с  развитием проекта и  усложнением бизнес-логики. 
В  реальном мире эффективность конвейера измеряется скоростью сборки 
изделий; в цифровом – скоростью выпуска новых релизов, отвечающих тре-
бованиям конечных пользователей. Скорость выпуска релизов зависит от 
большого числа факторов, многие из которых не имеют никакого отношения 
к коду. Мы всё же можем спроецировать этот показатель на код, используя 
такую характеристику, как поддерживаемость – насколько трудозатратно 
внедрение нового функционала и поддержка существующего.

Увеличивается ли поддерживаемость кода с добавлением каждого ново-
го слоя абстракции? Конечно, нет. Разве кто-то проектирует конвейер таким 
образом, что закручивание каждой отдельной гайки выносится в отдельный 
шаг? А имеет ли смысл внедрять новый слой абстракции в код только ради уве-
личения числа слоёв? Этими риторическими вопросами предлагаю закончить 
тему абстрактных веб-приложений (и конвейеров) и перейти к Ruby on Rails.

Rails предлагает три основных слоя абстракции из коробки: контроллеры, 
модели и  представления1. (Оставим за скобками вопрос о том, можно ли 
их считать хорошими согласно критериям, сформированным выше.) Такое 

1	 В разговорном русском языке чаще используется «вьюхи».
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небольшое количество абстракций благоприятно влияет на скорость разра-
ботки на старте – всего три места для добавления нового кода (представьте, 
если бы у нас сразу был десяток слоёв абстракции, как у взрослых приложе-
ний). В этом и есть квинтэссенция Пути Rails. В книге мы рассмотрим, как 
этот путь расширять, то есть как постепенно вводить новые слои абстракции 
в код, сохраняя фокус на разработке продукта.

Прежде чем расширять Путь Rails, нам необходимо получше разобраться 
в нём самом.

Rack
Rack (https://github.com/rack/rack) – это компонент, который отвечает за пре-
образование сырых HTTP-данных в  понятный Ruby-программам формат 
(и в обратную сторону). Более точно, Rack предоставляет абстрактный ин-
терфейс, описывающий две самые главные сущности HTTP-взаимодействия: 
запрос и ответ.

Rack также предлагает универсальную схему интеграции между веб-сер
верами (такими как Puma и Unicorn) и Ruby-приложениями. Используя код, 
мы можем представить эту схему следующим образом:

request_env = { "HTTP_HOST" => "www.example.com", ... }
response = application.call(request_env)
[status, headers, body_iterator] in response

Данные HTTP-запроса представлены как объект класса Hash (далее мы 
будем для краткости такие объекты называть «хеш»). Данный хеш содержит 
переменные запроса, включающие в себя HTTP-заголовки и специфичные для 
Rack свойства (например, rack.input для чтения тела запроса). Интерфейс 
и терминология уходят корнями в эпоху CGI-серверов, когда данные запроса 
передавались через переменные окружения в процесс-обработчик.

Common Gateway Interface (CGI)
Common Gateway Interface (https://www.w3.org/CGI, «общий интерфейс шлюза») – это 
одна из первых попыток стандартизировать интерфейс взаимодействия между веб-
серверами приложения. Согласно данному интерфейсу, совместимое приложение 
обязано считывать заголовки запроса из переменных окружения, а тело запроса – 
из стандартного устройства ввода (STDIN); ответ на запрос, в свою очередь, должен 
быть записан в стандартное устройство вывода (STDOUT). При этом для обработки 
каждого запроса CGI сервер запускает отдельный процесс приложения – непозволи-
тельная роскошь по современным меркам. Впоследствии возник стандарт FastCGI, 
который позволил использовать запущенный процесс приложения многократно.

Для совместимости с  Rack от приложения требуется только одно – реа-
лизовать метод #call, принимающий на вход хеш с данными запроса. Rack 
ожидает в качестве возвращаемого значения массив (Array) из трёх элемен-

https://github.com/rack/rack
https://www.w3.org/CGI
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