ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	5
1. ПРАКТИЧЕСКИЕ РАБОТЫ	6
Практическая работа 1. Структура информационной модели объекта строительства	ı 6
Практическая работа 2. Информационные требования заказчика	7
Практическая работа 3. План выполнения проекта	15
Практическая работа 4. Карты процессов	19
Практическая работа 5. Требования экспертизы при проверке информационных	
моделей	22
Практическая работа 6. Разработка регламента информационного обмена	
в организации	27
Практическая работа 7. Контроль качества цифровой информационной модели	
объекта капитального строительства на этапе проектирования	29
Практическая работа 8. Организация рабочей среды для разработки и использован	КИ
структурных элементов информационной модели объекта капитального	
строительства	33
Практическая работа 9. Классификатор строительной информации	38
Практическая работа 10. Оценка квалификации на соответствие профессионально стандарту «Специалист в сфере информационного моделирования)МУ
в строительстве»	41
2. КУРСОВАЯ РАБОТА	46
Тематика курсовых работ: «Организация процессов информационного	
моделирования»	46
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	47
СПИСОК РЕКОМЕНЛУЕМОЙ ЛИТЕРАТУРЫ	47

ВВЕДЕНИЕ

В учебно-методическом пособии представлен материал по основам информационного моделирования и организации процессов информационного моделирования объектов строительства. Рассматриваются задачи представления *цифровой информационной модели* (ЦИМ) здания на стадии проектирования. Обсуждаются вопросы настройки параметров проекта, описания и анализа данных цифровой информационной модели, организации работы над проектом. Описаны задание и процесс выполнения курсовой работы.

Предполагается знание основ архитектуры и строительных конструкций зданий. Материал представлен в виде отдельных практических работ. В течение одного учебного занятия можно выполнять одну или несколько работ. Необходимо разумно подходить к изменению порядка изучения материала. В конце учебного занятия рекомендуется ответить на контрольные вопросы. Для закрепления и проверки усвоения изученного материала предполагается выполнение контрольной работы на практическом занятии.

Учебно-методическое пособие можно использовать для самостоятельного выполнения практических работ.

1. ПРАКТИЧЕСКИЕ РАБОТЫ

Практическая работа 1 Структура информационной модели объекта строительства

Цель: научиться создавать структуру *информационной модели* (ИМ) ОС.

Задачи

- 1. Анализ состава проектной документации.
- 2. Описание структуры информационной модели ОС.

Ход работы

- 1. Ознакомиться с Постановлением Правительства РФ от 16.02.2008 г. № 87 «О составе разделов проектной документации и требованиях к их содержанию» (в последней редакции).
- 2. Прочитать Общие требования ГАУ г. Москвы «Московская государственная экспертиза» (МГЭ) к информационным моделям.
 - 3. Создать перечень состава информационной модели.

Информационное моделирование сопровождается разработкой документов (регламентирующих, разрешительных, отчетных и т.п.). Эти документы, переведенные в электронный вид, могут храниться в информационной модели здания, которая включает полный набор дисциплинарных цифровых информационных моделей, инженерную цифровую модель местности, а также сводную цифровую информационную модель, используемую для проверки согласованности дисциплинарных моделей. *Цифровые информационные модели* (ЦИМ) считаются электронными документами.

Информационная модель включает электронные документы, связанные с проектом:

- пояснительной записки;
- электронных чертежей, полученных из ЦИМ или созданных независимо от нее (в случае, если получение чертежа из модели не представляется возможным или не имеет практического значения, то это указывается в пояснительной записке);
 - графиков и диаграмм, фото-, видео- и аудиоматериалов.

Состав сводной цифровой информационной модели определяется в требованиях заказчика на проектирование и разработку информационных моделей. Обычно сводная ЦИМ здания включает архитектурные и конструктивные решения, инженерные системы и оборудование здания.

Разбиение на отдельные ЦИМ проводится в зависимости от объема будущей информации. Разбиение можно выполнять по следующим критериям:

- по отдельным корпусам, если *объект капитального строительства* (ОКС) состоит из двух и более корпусов или зданий. Не допускается моделирование в одном файле нескольких зданий;
- по секциям, зонам или уровням, если это необходимо для снижения размера рабочего файла;
- по разделам проектных решений для обеспечения коллективной работы необходимого разбиения комплекса зданий на части.

В обязательном порядке (если нет особых требований) в составе ЦИМ должны быть созданы:

- архитектурные решения;
- конструктивные решения;
- инженерные системы и оборудование здания (необходимых видов для конкретного типа здания);

 системы противопожарной безопасности (необходимых видов для конкретного типа здания).

Допускается разрабатывать несколько инженерных систем в одной ЦИМ, указывая коды обозначений систем в имени файла. Все данные информационной модели указываются в перечне предоставленных материалов (табл. 1).

Таблица 1

Состав информационной модели

№ п/п	Наименование документа	Описание документа				
Раздел про	екта					
Текстовая і	Текстовая информация:					
Графическа	ая информация:					
Медиаданные (фото, видео, аудио):						
Цифровые информационные модели (IFC):						

Задание для самостоятельной работы

Ознакомиться с правилами именования документов информационной модели.

Контрольные вопросы

- 1. Какой документ регламентирует состав проектной документации?
- 2. Как соотносятся друг с другом информационная модель и цифровая информационная модель?
 - 3. Какие способы разбиения объекта строительства на части вы знаете?
 - 4. С какой целью проводится разбиение объекта строительства на части?

Практическая работа 2 Информационные требования заказчика

Цель: отработать навыки составления ключевых разделов требований заказчика к информационной модели проекта.

Задачи

- 1. Идентификация целей и ожиданий заказчика: проанализировать его потребности, чтобы зафиксировать их в требованиях заказчика к информационной модели.
- 2. Составление разделов требований: разработать структуру и содержание разделов требований в соответствии с общей методологией.
 - 3. Формулирование общих требований к ЦИМ.

Ход работы

- 1. Описать организацию заказчика, его основную деятельность.
- 2. Сформировать состав разделов требований.
- 3. Сформулировать цели разработки и использования ЦИМ для организации.
- 4. Разработать содержание ключевых разделов.

Требования заказчика к информационной модели фиксируются в техническом задании (заданиях), которое включает раздел с требованиями к информационным моделям. В соответствии с СП 333.1325800.2020 «Информационное моделирование в строительстве. Правила формирования информационной модели объектов на различных стадиях жизненного цикла» требования заказчика в общем случае включают (не ограничиваясь):

- цели и задачи применения информационного моделирования на различных стадиях жизненного цикла;
 - этапы работ и контрольные точки выдачи информации;
 - требования к составу информационных моделей и объемам моделирования;
 - требования к уровням проработки элементов информационных моделей;
 - требования к составу и форматам выдачи результатов проекта.

При необходимости включаются:

- требования к именованию файлов;
- требования к качеству информационных моделей;
- требования к процедурам согласования, способам и форматам обмена данными, общим сетевым ресурсам;
- требования к предоставлению ключевых метрик проекта (например, метрики расхода стали на квадратный метр, расхода бетона, отношения полезной и общей площадей, число коллизий и др.).

1. Описание организации

Организация заказчика: девелоперская компания ХҮХ.

Основная деятельность: компания XYZ специализируется на разработке и реализации инновационных жилых и коммерческих недвижимых объектов. Компания создает современные, удобные и энергоэффективные пространства для жизни, работы и отдыха, стремясь к высшему качеству и инновационным решениям.

Стратегические цели: одной из ключевых стратегических задач компании XYZ является расширение деятельности с жилого сектора на производственные и высокотехнологичные проекты. Компания стремится к исследованию и внедрению новых решений, позволяющих создавать высококачественные объекты недвижимости в разнообразных областях, что в итоге увеличит конкурентоспособность и привлекательность компании для клиентов.

Структура организации: в компании XYZ существует отдел по управлению проектами и отдел *технологий информационного моделирования* (ТИМ-отдел) в составе руководителя отдела, ТИМ-менеджера и ТИМ-координаторов.

Для успешной реализации процессов управления жизненным циклом OKC с применением технологий информационного моделирования заказчику следует как можно раньше определить конкретные цели и задачи применения информационного моделирования на всех или некоторых этапах жизненного цикла и требования к информационной модели.

2. Цели разработки и использования ЦИМ:

- улучшение проектирования и планирования: создание ЦИМ позволяет более точно и детально планировать проекты, оптимизировать проекты зданий и инфраструктуры, учитывая функциональные и эстетические аспекты;
- повышение эффективности строительства: ЦИМ позволяет лучше координировать работы разных подрядчиков, заранее устраняя коллизии и конфликты, что снижает количество ошибок и переработок на стройплощадке;
- оптимизация управления ресурсами: ЦИМ обеспечивает более точное планирование использования материалов, трудовых ресурсов и времени, что способствует экономии затрат;
- улучшение управления активами и эксплуатацией: ЦИМ может содержать информацию обо всех аспектах здания, что помогает управлять его жизненным циклом, обеспечивать эффективную эксплуатацию и техническое обслуживание;

- привлечение инвесторов и партнеров: использование современных цифровых методов и ЦИМ может быть привлекательным фактором для инвесторов и партнеров, демонстрируя инновационный и ответственный подход компании;
- внедрение ЦИМ на новые рынки: позволяет компании расширить свой спектр деятельности на новые рынки, включая проекты в производственном и высокотехнологичном секторах.

К задачам применения информационного моделирования при инженерных изысканиях и архитектурно-строительном проектировании могут быть отнесены:

- 1) выпуск чертежей и спецификаций. Формирование проектной и рабочей документации может быть эффективно выполнено на основе данных ЦИМ. Такие документы содержат меньше ошибок и быстрее согласованно изменяются;
- 2) проверка и оценка технических решений. Данные ЦИМ могут просматриваться, анализироваться и оцениваться с применением программных средств. Доступ к единому актуальному варианту проекта способствует повышению обоснованности и качества принимаемых технических решений;
- 3) пространственная междисциплинарная координация и выявление коллизий. Коллективная работа над разными частями проекта требует согласованности, для чего проводится междисциплинарная координация, основанная на приведении частей проекта к единой системе координат и других договоренностей. Выявление коллизий с использованием специализированных программных инструментов при согласовании технических решений является обязательной процедурой для устранения конфликтов в проекте до начала этапа строительства;
- 4) *подсчет объемов работ и оценка сметной стоимости*. Объемы работ и оценка сметной стоимости строительства предусматривают использование геометрических и атрибутивных данных, полученных из информационной модели. Для этого необходима корректная классификация элементов модели;
- 5) инженерно-технические расчеты. Эти расчеты, в том числе имитационное моделирование различных процессов, основываются на извлечении и использовании геометрических и атрибутивных данных, полученных из информационной модели;
- 6) разработка проекта организации строительства и комплексного укрупненного сетевого графика. Имитационное моделирование может быть выполнено для всего процесса строительства и для его составных частей. Для разработки организационно-технологических решений, схем механизации, внутриплощадочной логистики, комплексного укрупненного сетевого графика можно совместно использовать данные ЦИМ и календарного графика строительства.

В качестве учебных задач информационного моделирования примем к исполнению первую-третью задачи.

- 3. Состав разделов требований заказчика к информационной модели
- 1. ВВЕДЕНИЕ
- 2. ОСНОВНЫЕ ТЕРМИНЫ И СОКРАЩЕНИЯ
- 3. ПЕРЕЧЕНЬ ПРОЕКТНЫХ ЭТАПОВ
- 4. ОБЩИЕ ТРЕБОВАНИЯ К МОДЕЛИРОВАНИЮ
- 4.1. Общие требования
- 4.2. Форматы данных и файлов
- 4.3. Система координат и единицы измерения
- 4.4. Уровни детализации элементов (LOD, LOI)
- 5. ТРЕБОВАНИЯ К МОДЕЛЯМ НА СТАДИИ «П»
- 5.1. Требования к архитектурным решениям
- 5.2. Требования к конструктивным решениям
- 5.3. Требования к инженерным системам
- 5.4. Требования к оборудованию и технологическим системам

6. КЛАССИФИКАЦИЯ И АТРИБУТИВНАЯ ПРОРАБОТКА

- 6.1. Выбор и применение классификаторов на стадии «П»
- 6.2. Уровни детализации элементов (LOD, LOI)
- 6.3. Атрибутивная информация для моделей
- 7. КОНТРОЛЬ КАЧЕСТВА И ВАЛИДАЦИЯ
- 7.1. Процессы контроля и верификации моделей
- 7.2. Матрица коллизий

Перечень проектных этапов представлен в табл. 2.

Таблица 2

Проектные этапы

№ п/п	Наименование этапа/ подэтапа	Ответственный	Дополнительный комментарий		
	1.	Подготовительный этап			
1.1	Заключение договора на разработку ЦИМ	Отдел управления проектами заказчика, ТИМ-отдел заказчика			
1.2	Формирование и согласование плана реализации проекта с применением ИМ	ТИМ-отдел генпроектиров- щика, ТИМ-отдел заказчика			
2. Этап разработки и согласования ЦИМ					
2.1	Разработка и согласование концептуальных решений	Проектные отделы генпроектировщика, ТИМ-отдел генпроектировщика	LOD 200		
2.2	Разработка дисциплинарных моделей	Проектные отделы генпроектировщика, ТИМ-отдел генпроектировщика	LOD 300-400		
2.3	Сборка сводной ЦИМ	Проектные отделы генпроектировщика, ТИМ-отдел генпроектировщика	Состав ответственных может дополняться при наличии субподрядчиков по отдельным видам работ		
2.4	Оформление документации	Проектные отделы генпроектировщика, ТИМ-отдел генпроектировщика			
2.5	Согласование и экспертиза ИМ	Отдел управления проектами заказчика, ТИМ-отдел заказчика			

4. Общие требования к моделированию

4.1. Общие требования

Все разделы проекта должны быть скоординированы между собой.

Модели для разных дисциплин/разделов должны разрабатываться в отдельных файлах, а их связь между собой должна быть реализована через внешние ссылки.

Рекомендуется следующий принцип разделения моделей для архитектурных и объемно-планировочных решений — «1 секция = 1 модель».

Объединение здания с несколькими секциями в единую модель. Определяется исходя из прогноза конечного веса файлов (после разработки *рабочей документации* (РД)). Рекомендуемый вес файлов — не более 500 Мб.

При количестве моделей более четырех в каждой дисциплине/разделе рекомендуется создавать сборки отдельно для каждого раздела, а затем формировать общий файлсборку.

Уровень детализации и заполнения информацией элементов модели согласовывается в плане реализации проекта и не противоречит уровню проработки ЦИМ (рис. 1).

Наименование		Уровень проработки ЦИМ			Исходная
этапа жизненного цикла			Обозначение	Описание	информация
Инженерные изыскания	ИЦММ	Модель инженерных изысканий	A	ЦИМ содержит взаимосвязанные графические и атрибутивные данные, представляющие результаты инженерных изысканий, а именно: результаты инженерно-геодезических изысканий, результаты инженерно-гидрометеорологических изысканий, результаты инженерно-экологических изысканий, результаты инженерно-геотехнических изысканий, самий	Результаты инженерных изысканий
	ИЦММ			ЦИМ содержит взаимосвязан- ные графические и атрибутив-	ИЦММ уровня «А»
Архитектурно- строительное проектирование (проектирование)	цим окс	Проектная модель	- B	ные данные, представляющие результаты проектирования ОКС, а именно: архитектурные, технические и технологические проектные решения ОКС	_

Рис. 1. Уровни проработки ЦИМ (СП 333.1325800.2020)

Обязательные для заполнения у всех элементов модели параметры представлены в табл. 3.

Элементы модели должны соответствовать требованиям заказчика или утвержденному заказчиком плану реализации проекта, они также должны быть максимально параметрическими, чтобы обеспечить быстрое внесение изменений в проект.

Все чертежи, спецификации и ведомости должны быть получены на основе элементов ЦИМ.

Таблица 3 Обязательные параметры модели

Наименование параметра	Тип данных	Раздел модели
Код по классификатору	Строка	Bce
Секция	Строка	Bce
Этаж	Число	Bce
Описание	Строка	АР, КР, ИОС
Марка конструкции	Строка	KP
Тип системы	Строка	ИОС

4.2. Форматы данных и файлов

Для ЦИМ

Формат файлов IFC: STEP Physical File (IFC-SPF, расширение «.ifc»).

Версия спецификации IFC: IFC4 ADD2 TC1. Вид представления модели (Model View Definition): MVD «Reference View 1.2».

Для текстовой документации

Формат XML (в схеме, соответствующей виду документа).

4.3. Система координат и единицы измерения

Наименование координационных (разбивочных) осей осуществлять в соответствии с требованиями ГОСТ Р 21.101-2020 «Система проектной документации для строительства. Основные требования к проектной и рабочей документации».

Все цифровые модели должны иметь одинаковую систему координат.

В проекте должны быть определены базовая точка проекта и точка съемки (пункт государственной геодезической сети).

При разработке информационной модели необходимо предусматривать:

- привязку базовой точки проекта к точке пересечения осей 1/А;
- координаты (местные и абсолютные);
- абсолютные и относительные отметки;
- фиксированную общую площадку проекта с наименованием и привязкой к топосъемке (геодезические кресты);
 - угол поворота проекта относительно истинного севера.

Наличие одинаковых координат и названий общих площадок во всех моделях является обязательным.

Уровни следует моделировать на отметке уровня чистого пола этажа. В случае переменной отметки чистого пола принять наименьшую отметку в пределах этажа.

В качестве нулевой отметки принять уровень чистого пола первого этажа.

Если в проекте неизвестны абсолютные координаты, то положения базовой точки проекта и точки съемки должны совпадать.

В относительных координатах проекта ориентация оси A-c запада на восток, в направлении увеличения номера цифровых осей, ориентация оси 1-c юга на север, в направлении увеличения значений буквенных осей.

Масштаб построений 1:1.

Результаты моделирования должны быть представлены в абсолютных координатах на местности в соответствии с требованиями «Технического задания на проектирование».

4.4. Уровни детализации элементов (LOD, LOI)

Требования к строительным конструкциям

Объекты, выполненные в составе информационной модели, должны содержать достаточное количество геометрической и атрибутивной информации, отражающей моделируемое объектом решение. На стадии проектирования необходимо задавать определение границ элемента, границы материалов в структуре элемента.

Информация, хранящаяся в смоделированном объекте или в его части, должна однозначно характеризовать объект для выполнения следующих действий с ним или его производными (геометрическими или атрибутивными):

- составление автоматических спецификаций средствами САПР;
- составление калькуляции или смет автоматическим и/или ручным способом.

При разработке архитектурно-планировочных решений моделируются помещения, стены и перегородки, навесные стены (витражи), колонны, балки, капители, двери, окна, балконные блоки, проемы, крыши, пандусы, лестницы, ограждения, шахты, вентиляционные блоки, подъемно-транспортное оборудование, перекрытия, отделка внешняя и внутренняя, оборудование (уровень проработки оборудования согласовывается заказчиком). Уровень проработки элементов должен быть не ниже LOD 200.

Наружная отделка фасадов, внутренняя отделка помещений должны соответствовать цвету и применяемым в проекте материалам.

При разработке несущих и ограждающих конструкций моделируются все несущие и ограждающие конструкции, включая фундаменты, стены, перекрытия, колонны, балки, фермы, стропила. Уровень проработки элементов должен быть не ниже LOD 300. Допускается моделирование отдельных элементов конструкций, технологического и иного оборудования с более низким уровнем проработки LOD 100, LOD 200 при согласовании с заказчиком. Пример описания LOD представлен на рис. 2.

Атрибутивное наполнение элементов модели должно соответствовать требованиям в части:

- состава атрибутов;
- наименования атрибутов;
- группировки атрибутов в соответствующие наборы свойств;
- типов данных;
- заполнения значения атрибутов.

Значения атрибутов должны соответствовать их представлению в документации. Атрибуты ЦИМ рекомендуется разделять на обязательные (основные) и дополнительные.

Элементы	Предпроектная подготовка строительства		Проектная подготовка строительства	
раздела АР	LOD 100	LOD 200	LOD 300	LOD 400
Стена	Типы, условный габарит	Точный габарит, положение, граница помещения	Внешний образ/вид, конструкция, материал, уклоны, маркировка, огнестойкость	Производитель, наименование по каталогу, артикул по каталогу
Перекрытие	Типы, условный габарит	Точный габарит, положение, граница помещения	Внешний образ/вид, конструкция, материал, уклоны, маркировка, огнестойкость	См. LOD 300
Пол	Требования отсутствуют	Требования отсутствуют	Типы, условный габарит, точный габарит, внешний образ/вид, конструкция, положение, материал, уклоны, граница помещения, маркировка	Производитель, наименование по каталогу, артикул по каталогу
Колонна	Условный габарит	Типы, точный габарит, положение	Внешний образ/вид, сечение/ профиль, конструкция, материал, граница помещения, маркировка	См. LOD 300
Потолок	Требования отсутствуют	Требования отсутствуют	Типы, условный габарит, точный габарит, внешний образ/вид, конструкция, положение, материал, уклоны, граница помещения, маркировка	Производитель, наименование по каталогу, артикул по каталогу
Окно	Условный габарит	Типы, положение	Точный габарит, внешний образ/ вид, конструкция, материал, маркировка	Производитель, фурнитура/оснастка
Дверь	Условный габарит	Типы, положение	Точный габарит, внешний образ/ вид, конструкция, материал, маркировка	Производитель, фурнитура/оснастка

Рис. 2. Описание LOD

К обязательным атрибутам элементов модели относятся:

- основные технико-экономические характеристики;
- атрибуты элементов ЦИМ (категории, типы, классы, коды по классификатору, маркировки, артикулы и т.п.);

Конец ознакомительного фрагмента. Приобрести книгу можно в интернет-магазине «Электронный универс» e-Univers.ru