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Предисловие от издательства
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Вы можете написать отзыв на нашем сайте www.dmkpress.com, зайдя 
на страницу книги и оставив комментарий в разделе «Отзывы и ре-
цензии». Также можно послать письмо главному редактору по адресу 
dmkpress@gmail.com; при этом укажите название книги в теме письма.

Если вы являетесь экспертом в  какой-либо области и  заинтересо-
ваны в написании новой книги, заполните форму на нашем сайте по 
адресу http://dmkpress.com/authors/publish_book/ или напишите в издательство 
по адресу dmkpress@gmail.com.

Список опечаток
Хотя мы приняли все возможные меры для того, чтобы обеспечить 
высокое качество наших текстов, ошибки все равно случаются. Если 
вы найдете ошибку в одной из наших книг – возможно, ошибку в ос-
новном тексте или программном коде, – мы будем очень благодар-
ны, если вы сообщите нам о ней. Сделав это, вы избавите других чи-
тателей от недопонимания и поможете нам улучшить последующие 
издания этой книги.

Если вы найдете какие-либо ошибки в коде, пожалуйста, сообщи-
те о них главному редактору по адресу dmkpress@gmail.com, и мы ис-
правим это в следующих тиражах.

Нарушение авторских прав
Пиратство в интернете по-прежнему остается насущной проблемой. 
Издательство «ДМК Пресс» очень серьезно относится к вопросам за-
щиты авторских прав и лицензирования. Если вы столкнетесь в ин-
тернете с незаконной публикацией какой-либо из наших книг, пожа-
луйста, пришлите нам ссылку на интернет-ресурс, чтобы мы могли 
применить санкции.

Ссылку на подозрительные материалы можно прислать по адресу 
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даря которой мы можем предоставлять вам качественные материалы.



Вступительное слово 
Ольве Маудала

Впервые я встретил Андерса Шау Кнаттена на местной встрече про-
граммистов C++ в Осло. С тех пор прошло довольно много времени, 
мы подружились и вместе проводили время, сталкиваясь на разных 
конференциях. Андерс проводил презентации на таких посвящен­
ных C++ мероприятиях, как ACCU, NDC TechTown, CppCon, C++ on 
Sea, Meeting C++ и многих других. Посещая их, я всегда узнаю что-то 
новенькое. Андерс может часами говорить о том, как на самом деле 
ведут себя целые числа, о том, что происходит перед вызовом main(), 
или о том, как эффективно работать с отладчиком. Он также обладает 
удивительной способностью заметить что-то, переосмыслить, 
придать другую форму и вывести на следующий уровень. Именно 
это он и  сделал, посетив два моих печально известных семинара 
C++ Pub Quiz. Очень скоро Андерс создал изумительный сайт cp-
pquiz.org1 (загляните, не поленитесь!). А  теперь он проводит свои 
собственные, значительно улучшенные версии таких семинаров на 
конференциях. В этой книге Андерс продолжил развивать эту идею.

Я люблю книги, люблю C++ и люблю задачки. В книге «Хорошо ли 
вы знаете C++?» все это сошлось в одном месте. Я изучаю и пользу-
юсь C++ вот уже больше 30 лет, но уверен, что буду читать и пере-
читывать эту книгу снова и снова и каждый раз находить что-то но-
вое. Если вы глубоко привязаны к C++, то тоже захотите прочитать 
ее. Книга станет для вас дорогой к более глубокому освоению этого 
чрезвычайно мощного и чарующего языка программирования. Она 
содержит 25 тщательно отобранных задач, которые призваны испы-
тать, насколько хорошо вы понимаете современные версии языка. 
После того как вы попытаетесь решить задачу самостоятельно, Ан-
дерс представит глубокое и основательное объяснение причин, по 

1	  https://cppquiz.org.
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которым эта задача интересна, и  способов научиться рассуждать 
о таких вещах.

Вы можете написать на C++ красивые программы, но, конечно, 
можно сочинить и полную лажу. Важно понимать, что такое C++, по-
тому что он уходит корнями в языки BCPL, C, Simula 67 и Algol 68. 
C++ стал тем, чем он является, потому что был быстро принят со-
обществом и  набрал миллионы активных пользователей уже на 
протяжении самых первых лет. C++ стал таким, каким мы его знаем, 
потому что он доверяет программисту и сосредоточен на решении 
реальных задач. Да, C++ сложен, быть может, даже слишком сложен, 
но это язык, на который нужно go-to (игра слов не случайна!) при 
работе во многих областях, как то: операционные системы, встраи-
ваемые системы, высокопроизводительные вычисления, особо бы-
стрые приложения, видеоигры и  космические станции. Приведем 
высказывание Бьярна Страуструпа (создателя C++), которое все рас-
ставляет по местам:

Есть только два вида языков: те, на которые жалуются, и те, которыми 
никто не пользуется.

Желаю вам всего наилучшего в путешествии к  более глубокому 
пониманию C++. На этот раз вашим гидом будет Андерс. Получайте 
удовольствие!

Ольве Маудал,
докладчик на международных конференциях по C и C++, 

преподаватель и организатор конференций.
Июнь 2024
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Предисловие

C++ – один из самых больших и старых языков программирования, 
которым активно пользуются. Он знаменит тем, что превратно ис-
толковывает все поведения по умолчанию и, как в знаменитом в со-
обществе C++ примере, может заставить демонов вылетать у вас из 
носа1. Невозможно выбрать лучший язык для книги, посвященной 
головоломкам в программировании!

На примере 25 задач мы изучим, как C++ работает под капотом, и, 
в частности, уделим внимание нескольким его важным причудам. 
Чтобы извлечь максимум пользы из книги, вы должны иметь опыт 
работы на C++ и быть знакомы с основами языка, в том числе с про-
стым объектно ориентированным программированием и шаблона-
ми. Прочитав книгу, вы будете более глубоко разбираться в таких 
вопросах, как инициализация, время жизни, разрешение перегруз-
ки, неявные преобразования, наследование, неопределенное и не-
специфицированное поведение и др. Но, на мой взгляд, более важно 
то, что вы заинтересуетесь, как на самом деле работает C++, пусть 
даже в одной книге можно дать ответы лишь на немногие вопросы.

Как пользоваться этой книгой
Книга содержит 25 задач по C++ с ответами и объяснениями. Боль-
шая их часть представляет собой законченные программы, кото-
рые, согласно стандарту C++, дают вполне определенный результат. 
Но некоторые приводят к ошибкам компиляции и даже к неопреде-
ленному поведению. Ваша задача – понять, что произойдет после 
того, как вы откомпилируете и выполните каждую задачу, восполь-
зовавшись отвечающей стандарту реализацией C++.

Возьмем для примера следующую гипотетическую задачу. Это 
полная программа на C++ с функцией main:

1	  http://catb.org/jargon/html/N/nasal-demons.html.
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#include <iostream>
int main()
{
	 std::cout << (1 < 2);
}

Ваша задача – прочитать код и попытаться угадать, что выведет 
откомпилированная программа. Обязательно подумайте сами, пре-
жде чем переворачивать страницу в поисках ответа!

Хочу обратить внимание на несколько технических деталей.
	� Для краткости я объявляю main без параметров (argc, argv) и не 
возвращаю явно значение. То и другое необязательно, а  без 
них задачи немного проще читать.

	� Во всех задачах я использую struct, а не class. Семантической 
разницы между ними нет – просто в struct по умолчанию под-
разумевается видимость членов public, а не private, поэтому 
нам не нужно вставлять всюду public:.

	� Как всегда в C++, значения типа bool по умолчанию печатаются 
как 1 и 0, а не true и false.

Эта программа печатает 1 (представляющую true), потому что 1 
меньше 2.

Но получить правильный ответ – только полдела. А вторая поло-
вина – понять, почему программа работает именно так, а не иначе. 
Задачи убеждают в том, что нужно лучше изучать, как C++ работает 
за кулисами. Я призываю вас вчитываться в объяснения, пока не до-
стигнете полного понимания.

Неопределенное поведение
В некоторых задачах может иметь место неопределенное поведение. 
Так называется ситуация, когда при выполнении программы проис-
ходит что-то ужасное, чего компилятор не может (точнее говоря, не 
обязан) обнаружить. Например, мы можем обратиться к элементу за 
пределами массива, или арифметическое выражение, содержащее 
целые со знаком, может привести к переполнению. В таких случа-
ях стандарт C++ не налагает никаких ограничений на реализацию, 
и случиться может все что угодно, включая демонов, вылетающих из 
носа. Если в задаче имеется неопределенное поведение, то вы долж-
ны не только идентифицировать его, но и предположить, что про-
изойдет на практике в типичной системе. Действительно ли из носа 
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начнут вылетать демоны или случится что-то более приземленное 
и определенное?

Снова рассмотрим пример:

#include <iostream>
#include <limits>
int main()
{
	 std::cout << std::numeric_limits<int>::max() + 1;
}

Переполнение в целочисленной арифметике со знаком – неопреде-
ленное поведение, поэтому, обнаружив его, вы на полпути к решению!

Строить догадки о  том, что произойдет в  случае неопределен-
ного поведения, – занятие неблагодарное. Поэтому поступим ина-
че. В любой задаче с неопределенным поведением вторая полови-
на – выяснить, что произойдет при запуске программы на своем 
компьютере. На моем компьютере целые со знаком представляют-
ся в  дополнительном коде (как во всех реализациях, отвечающих 
стандарту C++20 и более поздним), и мой процессор не возбуждает 
исключения в случае переполнения. Поэтому, когда я прибавляю 1 
к наибольшему положительному целому, происходит оборачивание 
и получается наименьшее отрицательное целое. Поскольку в моей 
системе тип int 32-разрядный, программа печатает -2147483648. Точ-
ное значение вам ни к чему, но если вы догадались, что будет на-
печатано наименьшее отрицательное целое, значит задача решена!

Не делайте этого дома

Угадывание или проверка того, что происходит в случае 
неопределенного поведения, – интересное упражнение, 
которое может пополнить ваши знания о работе C++ на 
своей платформе. Также это поможет распознавать опре-
деленные типы ошибок в реальных программах. Но не 
делайте никаких предположений о своих реальных про-
граммах на основе этих находок! Ваши предположения 
могут оказаться ложными на других компьютерах, после 
обновления компилятора или при компиляции с други-
ми параметрами оптимизации. Компилятору даже раз-
решено удалять проверку ошибок из кода, если он может 
доказать, что имеет место неопределенное поведение!
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Неспецифицированное и зависящее 
от реализации поведение
Стандарт C++ не все определяет строго, он оставляет некоторую сво-
боду реализации. Вот несколько примеров:

	� конкретные размеры целых типов;
	� порядок вычисления аргументов функции;
	� порядок инициализации глобальных переменных.

Это позволяет каждой реализации принимать решения, наиболее 
подходящие в конкретной системе.

В большинстве программ какое-то неспецифицированное или 
зависящее от реализации поведение присутствует, и это не ошиб-
ка. В  отличие от неопределенного поведения демоны из носа не 
полетят. Просто разные реализации могут вести себя немного по-
разному, не выходя за рамки допустимого поведения.

Если в задаче имеет место неспецифицированное или зависящее 
от реализации поведение, попытайтесь догадаться, как поведет себя 
программа в типичном случае.

Эксперименты с кодом
Самая важная часть изучения всего, связанного с программирова-
нием, – самостоятельные эксперименты. Код из этой книги можно 
найти на ее домашней странице на сайте The Pragmatic Bookshelf1. 
Вы можете собрать его локально, открыв файл CMakeLists.txt в  своей 
любимой IDE или в командной строке:

mkdir build
cd build
cmake ..
cmake --build .

Проект содержит по одному cpp-файлу на задачу, и каждый из них 
транслируется в один двоичный файл, названный так же, как соот-
ветствующая задача в книге.

Можете также повозиться с  кодом непосредственно в  браузере, 
скопировав его в  онлайновый компилятор. Я  горячо рекомендую 

1	  https://pragprog.com/titles/akbrain.
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сайт Compiler Explorer1, где вы можете выбрать разные компиляторы 
и сравнить версии и архитектуры, попробовать различные параме-
тры оптимизации, добавить другие флаги компилятора, параметры 
проверки кода и т. д.

Итак, приступим! Да – и берегитесь демонов.

1	  https://godbolt.org.
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Задача 1

Сколько градусов?

how-many-degrees.cpp
#include <iostream>

struct Degrees
{
	 Degrees() : degrees_(0)
	 {
		  std::cout << "Default constructed\n";
	 }
	 Degrees(double degrees) : degrees_(degrees)
	 {
		  std::cout << "Constructed with " << degrees_ << "\n";
	 }
	 double degrees_;
};
struct Position
{
	 Position() : latitude_{1} { longitude_ = Degrees{2}; }
	 Degrees latitude_;
	 Degrees longitude_;
};

int main()
{
	 Position position;
}

Угадайте результат

Попробуйте угадать результат, не переворачивая страницу.



Программа печатает следующий результат:
Constructed with 1
Default constructed
Constructed with 2

Обсуждение
В структуре Position два члена типа Degrees. Один инициализируется 
в списке инициализации членов, второй в теле конструктора. Тогда 
почему мы видим три сконструированных объекта Degrees?

Все члены класс инициализируются до входа в тело конструктора. 
Если вы явно инициализируете член, как мы поступили с latitude_, 
то именно эта инициализация и будет использована. Если нет, как 
в случае с longitude_, то член будет инициализирован по умолчанию, 
поэтому мы видим, что напечатана строка Default constructed. По-
сле того как все члены инициализированы, мы входим в тело кон-
структора, инициализируем временный объект Degrees{2}, а  затем 
присваиваем его копированием ранее инициализированному по 
умолчанию члену longitude_.

Заметим, что вместо явной инициализации члена в списке ини-
циализации членов можно было бы использовать инициализатор по 
умолчанию прямо в объявлении члена:

examples/default-member-initializer/default-member-initializer.cpp
struct Position
{
	 Position() { longitude = Degrees{2}; }
	 Degrees latitude{1}; // инициализатор члена по умолчанию
	 Degrees longitude;
};

Использование инициализатора члена по умолчанию может быть 
полезной идеей, если конструкторов несколько. Тогда не нужно пом-
нить о включении этого члена в каждый список инициализации членов.

Для дополнительного чтения
Конструкторы и списки инициализации членов

https://en.cppreference.com/w/cpp/language/constructor.
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Задача 2

Теория струн

string-theory.cpp
#include <iostream>
#include <string>

void serialize(const void*) { std::cout << "const void*"; }
void serialize(const std::string&) { std::cout << "const string&"; }
int main()
{
	 serialize("hello world");
}

Угадайте результат

Попробуйте угадать результат, не переворачивая страницу.



Программа печатает следующий результат:
const void*

Обсуждение
Почему передача строки функции serialize приводит к вызову пере-
груженного варианта, который принимает указатель на void, а  не 
к вызову варианта, принимающего строку?

Когда мы вызываем функцию, имеющую несколько перегружен-
ных вариантов, компилятор применяет процесс разрешения пере-
грузки, чтобы понять, какой вариант самый подходящий. Для это-
го компилятор пытается преобразовать каждый аргумент функции 
к  типу соответствующего параметра для каждого перегруженного 
варианта. Одни преобразования считаются лучше других, а  самое 
лучшее – когда аргумент уже имеет правильный тип.

Перегруженные варианты, в  которых все аргументы можно 
успешно преобразовать, помещаются в множество подходящих функ-
ций. Затем компилятор должен определить, какой вариант выбрать 
из этого множества. Если некоторый перегруженный вариант имеет 
лучшее преобразование, чем другие, хотя бы для одного аргумента 
и не худшее для всех остальных, то этот вариант считается лучшей 
подходящей функцией и является результатом процесса разрешения 
перегрузки. Если ни один вариант не лучше всех остальных, то вы-
зов считается недопустимым и не компилируется.

Рассмотрим пример:

serialize(int, int); // 1
serialize(float, int); // 2

При таких двух перегруженных вариантах предположим, что име-
ется вызов:

serialize(1, 2);

Оба перегруженных варианта serialize являются подходящими. 
Но для первого преобразование первого аргумента лучше (int → 
int лучше, чем int → float), а для второго – не хуже (int → int 
в обоих вариантах), поэтому он выбирается как лучшая подходя-
щая функция.

20    Хорошо ли вы знаете С++?
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