
Оглавление

Об авторе.. 18

О рецензенте.. 19

Предисловие от издательства... 20

Предисловие... 21
Для кого предназначена эта книга...22
Что добавлено во втором издании...22
Краткое содержание книги...24
Как извлечь максимум из этой книги..28
Скачивание примеров кода..28
Скачивание цветных иллюстраций...29
Графические выделения...29
Обратная связь...30
Отзывы...30

Глава 1. Программирование ядра Linux – краткое введение.... 31
Подготовка рабочего пространства ядра...32
Технические требования...33
Клонирование репозитория кода...33

Глава 2. Сборка ядра Linux из исходного кода – часть 1............ 35
Технические требования...36
Предварительные условия для сборки ядра..36
Нумерация версий ядра Linux..37

Нумерация по пальцам на руках и ногах...38
Цикл разработки ядра – основы...39

Просмотр журнала ядра в Git из командной строки...................................40
Просмотр журнала ядра в Git на странице GitHub......................................42
Цикл разработки ядра конспективно..43
Упражнение...44

Типы деревьев исходного кода...44
LTS-ядра – новый мандат..46
Какое ядро мне использовать?...47

Шаги сборки ядра из исходного кода...48
Шаг 1 – получение исходного кода ядра Linux..49

Скачивание дерева конкретного ядра...49
Клонирование дерева Git..51

Шаг 2 – распаковка исходного кода ядра...52
Краткий обзор дерева исходного кода ядра..53

Шаг 3 – конфигурирование ядра Linux..59
Минимальные сведения о системе сборки Kconfig/Kbuild.........................60

Как работает система Kconfig+Kbuild – минимальные сведения...........62
Получение конфигурации по умолчанию...63

Получение хорошей отправной точки для конфигурации ядра............64
Конфигурирование ядра как в дистрибутиве..65
Получение оптимизированной конфигурации ядра с помощью
localmodconfig..66
Конфигурирование ядра для типичной встраиваемой
Linux-системы...66
Просмотр всех доступных конфигурационных параметров..................70

Применение подхода localmodconfig...74
Донастройка конфигурации ядра с помощью графического
интерфейса make menuconfig...76

Примеры работы с интерфейсом make menuconfig................................79
Конфигурирование ядра – дополнительные вопросы................................84

Поиск по меню...84
Поиск различий в конфигурациях...86
Использование скрипта config для просмотра и редактирования
конфигурации ядра...86
Конфигурирование безопасности ядра...87

Настройка меню Kconfig и добавление своего собственного пункта............90
О файлах Kconfig*..90
Создание нового пункта в меню General Setup...93
Несколько слово о языке Kconfig..96

Резюме..99
Упражнение..99
Вопросы..100
Для дополнительного чтения...100

Глава 3. Сборка ядра Linux из исходного кода – часть 2..........101
Технические требования...101
Шаг 4 – сборка образа ядра и модулей...101

Решение проблемы сертификата в Ubuntu..105
Шаг 5 – установка модулей ядра...109

Нахождение модулей ядра среди исходного кода.....................................109
Устанавливаем модули ядра...110
Задание другого места установки модулей по умолчанию......................111

Шаг 6 – генерирование образа initramfs и подготовка
начального загрузчика..111

Генерирование образа initramfs – что под капотом..................................113
О назначении каркаса initramfs...115

Зачем нужен каркас initramfs?...115
Основы процесса начальной загрузки в x86...117
Еще о каркасе initramfs...120

Заглянем внутрь образа initramfs...120

6    Оглавление

Шаг 7 – конфигурирование начального загрузчика GRUB...........................124
Конфигурирование GRUB – основы...124
Выбор ядра, загружаемого по умолчанию...125
Загрузка ВМ с помощью начального загрузчика GRUB............................127
Эксперименты с приглашением GRUB..129

Проверка конфигурации нового ядра..131
Сборка ядра для Raspberry Pi..132

Шаг 1 – клонирование дерева исходного кода ядра Raspberry Pi.............133
Шаг 2 – установка инструментов кросс-разработки
x86_64-в-AArch64...134
Шаг 3 – конфигурирование и сборка ядра AArch64 для Raspberry Pi.......136

Разные замечания по сборке ядра...138
Минимальные требования к версии..139
Сборка ядра для другой машины...139
Наблюдение за ходом сборки ядра..141
Синтаксис сокращенного выполнения
в применении к процедуре сборки..143
Отсутствующие заголовочные файлы для разработки
с участием OpenSSL...143
Как проверить, какие дистрибутивные ядра установлены?....................144

Резюме..145
Вопросы..145
Для дополнительного чтения...145

Глава 4. Написание первого модуля ядра – часть 1...................146
Технические требования...146
Архитектура ядра – часть 1...147

Пространство пользователя и пространство ядра....................................148
Библиотечные функции и системные вызовы..148
Компоненты ядра..150

Исследование структуры LKM..152
Каркас LKM...152
Место модулей ядра в дереве исходного кода...154

Написание первого модуля ядра..156
Знакомство с C-кодом модуля «Hello, world»..156
Пояснения к коду...158

Заголовочные файлы ядра..158
Модульные макросы...159
Точки входа и выхода..159
Возвращаемые значения..160

Типичные операции над модулями ядра..163
Сборка модуля ядра...163

Выполнение модуля ядра..165
Первое знакомство с функцией printk()...166
Получение списка активных модулей ядра...168
Выгрузка модуля из памяти ядра...168
Наш вспомогательный скрипт lkm...169

Оглавление    7

Запись в журнал ядра и функция printk...172
Работа с кольцевым буфером в памяти ядра..172
Протоколирование ядра и программа journalctl.......................................173
Уровни протоколирования printk...175

Макросы pr_<foo>..177
Запись на консоль..179
Вывод на консоль Raspberry Pi..182
Включение отладочных сообщений ядра..185
Введение в динамическую отладку ядра...187

Ограничение частоты сообщений printk...191
Макросы с ограничением частоты...192

Генерирование сообщений ядра из пространства пользователя.............193
Стандартизация вывода printk с помощью макроса pr_fmt.....................195
Переносимость и спецификаторы формата в printk................................196
Что такое индексирование printk?...197

Основы Makefile для сборки модуля ядра..198
Резюме..202
Вопросы..202
Для дополнительного чтения...203

Глава 5. Написание первого модуля ядра – часть 2...................204
Технические требования...204
«Улучшенный» шаблон Makefile для модулей ядра.......................................205

Конфигурирование «отладочного» ядра..207
Кросс-компиляция модуля ядра...209

Подготовка системы к кросс-компиляции..209
Попытка 1 – установка переменных окружения ARCH
и CROSS_COMPILE...210
Попытка 2 – Makefile указывает на дерево исходного кода ядра
для целевой платформы...212
Попытка 3 – кросс-компиляция модуля ядра..214

О совместимости ABI ядра Linux..215
Попытка 4 – кросс-компиляция нашего модуля ядра..............................216
Сводка ошибок, допущенных нами при кросс-компиляции,
сборке и загрузке модулей, и способов их исправления..........................217

Сбор минимальной информации о системе...218
Лицензирование модулей ядра..223

Лицензирование внутреннего кода ядра...223
Лицензирование внешних модулей...224

Эмуляция «библиотек» для модулей ядра...225
Эмуляция библиотек путем компоновки нескольких исходных
файлов..226
Область видимости функций и переменных в модуле ядра....................227
Стек модулей..230

Эксперименты со стеком модулей...231
Эмуляция «библиотек» для модулей ядра – резюме и выводы................237

Передача параметров модулю ядра...238

8    Оглавление

Объявление и использование параметров модуля...................................239
Получение и изменение параметров после вставки модуля...................241
Допустимые типы параметров ядра и их проверка..................................243

Проверка параметров модуля..244
Переопределение имени параметра модуля...245
Параметры ядра, относящиеся к оборудованию..................................246

Операции с плавающей точкой в ядре запрещены......................................246
Как заставить ядро выполнять FP..247

Автозагрузка модулей на этапе начальной загрузки системы....................249
Автозагрузка модулей – дополнительные сведения.................................254

Модули ядра и безопасность – краткий обзор..256
Параметры в файловой системе proc, влияющие
на системный журнал..257

О системном элементе dmesg_restrict..257
О системном элементе kptr_restrict...258

Криптографическое подписание модулей ядра..260
Два режима подписания модулей..262

Полный запрет модулей ядра...263
LSM блокировки ядра – введение...263

Наставление по стилю кодирования для разработчиков ядра.....................264
Предложение своего кода в основную ветвь ядра...264

С чего начать?..265
Резюме..266
Вопросы..266
Для дополнительного чтения...266

Глава 6. Основы внутреннего устройства ядра –
процессы и потоки... 267

Технические требования...268
Контексты процесса и прерывания..268
Основы виртуального адресного пространства (ВАП) процесса.................270
Организация процессов, потоков и их стеков – в пространстве
пользователя и в пространстве ядра..273

Скрипт для получения числа процессов и потоков..................................274
Организация пространства пользователя...276
Организация пространства ядра..277

Сводка сведений, относящихся к потокам, структурам
задач и стекам...279

Просмотр стеков в пространстве пользователя и ядра............................280
Традиционный подход к просмотру стеков..281

Взгляд на ВАП процесса с высоты птичьего полета..................................287
Структура задачи в ядре и доступ к ней..288

Знакомство со структурой задачи..290
Доступ к структуре задачи с помощью current...292
Определение контекста..293

Работа со структурой задачи с помощью current..294
Встроенные в ядро вспомогательные функции и оптимизации.............296

Оглавление    9

Использование нашего модуля ядра для печати
информации о контексте процесса..297

Доказательство монолитности ОС Linux...298
Использование printk с учетом безопасности.......................................299

Обход списков задач ядра...299
Обход списка задач I – отображение всех процессов................................300
Обход списка задач II – отображение всех потоков..................................301

Как отличить процесс от потока – TGID и PID.......................................302
Обход списка задач III – код...303

Резюме..306
Вопросы..307
Для дополнительного чтения...307

Глава 7. Внутреннее устройство управления
памятью – основы...308

Технические требования...308
Разделение VM...309

Заглянем под капот – программа Hello, world...309
Не только printf()...311

Виртуальная адресация и трансляция адресов...313
Переход от виртуального адреса к физическому –
очень краткий обзор...315

Разделение VM в 64-разрядных системах Linux.......................................318
Типичные разделения VM..320

ВАП процесса – полная картина...322
Исследование ВАП процесса...323

Детальное исследование ВАП пользователя...324
Непосредственный просмотр карты памяти процесса
с помощью procfs...324
Интерфейсы для просмотра карты памяти процесса...........................326

Основы VMA...332
Исследование ВАП ядра..333

Верхняя память в 32-разрядных системах..335
Модуль, показывающий информацию о ВАП ядра...................................336

Макросы и переменные, описывающие структуру ВАП ядра..............336
Практикум – просмотр сведений о ВАП ядра.......................................340
ВАП ядра глазами procmap...345
Практикум – сегмент пользователя...349
Страница ловушки нуля..352
Документация ядра по структуре памяти...352

Рандомизация структуры памяти – KASLR...353
Рандомизация памяти пользователя с помощью ASLR...........................354
Рандомизация памяти ядра с помощью KASLR..355
Опрос и изменение состояния KASLR с помощью скрипта.....................355

Организация физической памяти..358
Как организована физическая память...358

Узлы и NUMA...359
Зоны внутри узла...362

10    Оглавление

Память прямого отображения и трансляция адресов..............................363
Введение в модели физической памяти..367
Краткое описание модели sparsemem[-vmemmap]...................................368

Резюме..369
Вопросы..370
Для дополнительного чтения...370

Глава 8. Выделение памяти ядра для авторов
модулей – часть 1..371

Технические требования...371
Введение в распределители памяти ядра..372
Страничный распределитель и его использование......................................373

Принципы работы страничного распределителя.....................................373
Организация списка свободных в страничном распределителе.........373

Как работает страничный распределитель..376
Проработка нескольких сценариев..377
Внутреннее устройство страничного распределителя –
дополнительные детали..378
Как использовать API страничного распределителя............................379
Флаги GFP...381
Освобождение памяти с помощью страничного
распределителя..382
Рекомендации по выделению и освобождению памяти ядра.............383
Написание модуля ядра для демонстрации API страничного
распределителя..384
Страничный распределитель и внутренняя фрагментация.................389

Еще о флагах GFP...391
Никогда не засыпайте в атомарных контекстах...................................391

Страничный распределитель – за и против..394
Слябовый распределитель и его использование...394

Идея кеширования объектов..394
Часто задаваемые вопросы об использовании слябовой памяти........395

Как использовать API слябового распределителя.....................................398
Выделение слябовой памяти..398
Освобождение слябовой памяти..399
Функция kfree_sensitive() (ранее kzfree())..400
Структуры данных – замечания о проектировании.............................401
Слябовые кеши и kmalloc..402
Модуль ядра, демонстрирующий использование слябового API.........404

Размерные ограничения функции kmalloc..406
Тестируем пределы выделения памяти за один вызов........................407

Слябовый распределитель – дополнительные детали..................................411
Управляемые API выделения памяти..411
Дополнительные слябовые API..412
Контрольные группы и память...412

Подводные камни при использовании слябового распределителя.............413
Базовые положения и выводы..413

Оглавление    11

Проверка выделения слябовой памяти с помощью
ksize() – случай 1..414
Проверка выделения слябовой памяти с помощью ksize() – случай 2....415

Интерпретация вывода в случае 2...417
Графическое представление...418

Нахождение внутренней фрагментации в ядре..419
Простой способ с применением slabinfo...419
Получение дополнительных сведений с помощью
alloc_traces и скрипта..420

Слой слябового распределителя – плюсы и минусы.................................424
Слой слябового распределителя – несколько слов о реализации в ядре.... 424

Резюме..425
Вопросы..425
Для дополнительного чтения...425

Глава 9. Выделение памяти ядра для авторов
модулей – часть 2..426

Технические требования...426
Создание специального слябового кеша...426

Создание и использование специального слябового кеша
в модуле ядра...427

Шаг 1 – создание специального слябового кеша..................................427
Шаг 2 – использование памяти из специального слябового кеша.......429
Шаг 3 – уничтожение специального кеша...430

Специальный слябовый кеш – пример модуля ядра................................430
Получение полезной информации о слябовых кешах..........................434

Резчики слябов..435
Сводка плюсов и минусов слябового распределителя..............................436

Отладка проблем с памятью в ядре – краткий обзор...................................436
API выделения памяти vmalloc...438

Как использовать функции семейства vmalloc...439
Пример использования vmalloc()...440
Краткое замечание о выделении памяти в пространстве
пользователя и подкачке страниц по запросу..443
Родственники vmalloc()...445

Эта память выделена vmalloc (или принадлежит модулю)?................445
Не уверены, какую функцию использовать? Попробуйте kvmalloc()...... 445
Различные вспомогательные функции – vmalloc_exec()
и vmalloc_user()..449
Задание защиты памяти...449
Сравнение функций kmalloc() и vmalloc()...450

Выделение памяти в ядре – какой API использовать...................................451
Наглядное представление API выделения памяти ядра...........................451
Выбор подходящей функции для выделения памяти ядра......................452
Пара слов о DMA и CMA..455

Восстановление памяти – важная служебная задача ядра...........................455
Зонные предельные уровни и kswapd..456

12    Оглавление

Новые многопоколенческие LRU-списки..457
Эксперимент – гистограмма данных MGLRU..458

Краткое введение в DAMON – мониторинг доступа к данным................460
Выполнение рабочей нагрузки и наблюдение за ней
с помощью интерфейса damo...461

Остаться в живых – палач процессов...464
Намеренный вызов палача процессов...465

Вызов палача процессов с помощью магической SysRq......................465
Вызов палача процессов с помощью бешеного
распределителя памяти..466

Три политики перезаказа памяти..467
Перезаказ виртуальной памяти с точки зрения функции
__vm_enough_memory()..468
Случай 1: vm.overcommit_memory == 0
(режим по умолчанию, OVERCOMMIT_GUESS)......................................471
Случай 2: vm.overcommit_memory == 2 (перезаказ VM выключен,
OVERCOMMIT_NEVER) и vm.overcommit_ratio == 50.............................473
Подкачка страниц по запросу и палач процессов.................................475
Оптимизированное чтение (неотображенной памяти).......................481

Что такое оценка OOM..482
Заключительные мысли о палаче процессов и контрольных группах....482
Замечание о контрольных группах и полосе пропускания памяти483

Резюме..484
Вопросы..485
Для дополнительного чтения...485

Глава 10. Планировщик CPU – часть 1..486
Технические требования...487
Внутреннее устройство планирования CPU, часть 1 – основы.....................487

Что такое KSE в Linux?...487
Конечный автомат процесса в Linux..489
Политики планирования POSIX...491

Приоритеты потоков...493
Визуализация хода выполнения...494

Использование gnome-system-monitor
для визуализации хода выполнения..495
Использование perf для визуализации хода выполнения........................496

Практическое занятие – командная строка..498
Практическое занятие – графический интерфейс................................500

Другие подходы к визуализации потока выполнения..............................502
Внутреннее устройство планирования CPU, часть 2.....................................504

Модульные классы планирования...504
Концептуальный пример для понимания классов планирования....... 509
Опрос класса планирования...510
Краткое описание работы класса вполне справедливого
планирования (CFS)..513
Статистика планирования..517

Оглавление    13

Запрос политики и приоритета планирования данного потока..................518
Внутреннее устройство планирования CPU, часть 3.....................................521

Вытесняемое ядро...522
Динамическое задание режима вытеснения..523

Кто вызывает код планировщика?...524
Когда вызывается schedule()?...525

Минимально необходимые сведения о структуре thread_info.............525
Обслуживание прерывания от таймера – установка TIF_NEED_
RESCHED..527
Контекст процесса – проверка TIF_NEED_RESCHED.............................529
Точки входа в планировщик CPU – итоги..531
Краткий обзор кода планировщика...533

Резюме..534
Вопросы..535
Для дополнительного чтения...535

Глава 11. Планировщик CPU – часть 2..536
Маска привязки к CPU, ее получение и установка..536
Запрос и установка маски привязки потока к CPU.......................................537

Использование taskset для работы с маской привязки к CPU..............540
Задание маски привязки к CPU для потока ядра..................................541

Запрос и установка политики и приоритета планирования потока...........542
Задание политики и приоритета для потока ядра....................................543

Реальный пример – поточные обработчики прерываний...................545
Введение в контрольные группы...546

Групповые контроллеры...547
Исследование иерархии контрольных групп версии v2...........................549

Активация и деактивация контроллеров..550
Контрольные группы внутри иерархии...552
Systemd и контрольные группы...556
Наш скрипт для изучения контрольных групп.....................................563

Практическое занятие – ограничение потребления CPU
с помощью контрольных групп версии v2..565

Использование systemd для задания ограничений
на потребление ресурсов службой...566

Введение в эксплуатацию Linux в качестве ОСРВ...577
О сборке стандартного ядра 6.x с заплатами RTL (для x86_64)................579

Разные вопросы, относящиеся к планированию..580
Несколько функций ядра, о которых стоит знать.....................................581
ОС ghOSt...581

Резюме..582
Вопросы..582
Для дополнительного чтения...582

Глава 12. Синхронизация ядра – часть 1.....................................583
Критические секции, монопольное выполнение и атомарность................583

Что такое критическая секция?..584

14    Оглавление

Классический случай – i++ для глобальной переменной..........................587
Концепции – блокировка..590

Критические секции – основные положения..593
Гонки за данные – более формальное определение.................................594

Вопросы конкурентности в ядре Linux..597
Многоядерные SMP-системы и гонки за данные......................................597
Вытесняемые ядра, блокирующий ввод-вывод
и гонки за данные..598
Аппаратные прерывания и гонки за данные..599
Наставления по блокировке и взаимоблокировка....................................599

Мьютекс или спин-блокировка?
Что и когда использовать..603

Какую блокировку использовать – теоретически.....................................605
Какую блокировку использовать – практически.......................................606

Использование мьютексов..607
Инициализация мьютекса..607
Правильное использование мьютекса...608
Функции захвата и освобождения мьютекса..609

Захват мьютекса: прерываемый
или непрерываемый сон?...610

Захват мьютекса – пример драйвера...611
Мьютекс – еще несколько замечаний..616

Варианты API мьютексов..616
Вариант I/O..618
Семафор и мьютекс...618
Инверсия приоритетов и RT-мьютекс...619
Внутреннее устройство...620

Использование спин-блокировок..621
Спин-блокировка – простое использование...621
Спин-блокировка – пример драйвера...622
Тест – засыпание в атомарном контексте...624

Тестирование модуля с ошибками на отладочном ядре 6.1.................625
Блокировка и прерывания..630

Сценарий 1 – метод драйвера и обработчик аппаратного
прерывания сериализованы...632
Сценарий 2 – метод драйвера и обработчик аппаратного
прерывания чередуются...632

Сценарий 2 в одноядерной системе...632
Сценарий 2 в многоядерной SMP-системе..633
Решение проблемы в одноядерных и многоядерных системах
с помощью функций spin_[un]lock_irq()...634
Сценарий 3 – некоторые прерывания замаскированы,
метод драйвера и обработчик прерывания чередуются......................635

Обработка прерывания, нижние половины и блокировка.......................637
Обработка прерываний в Linux – основные положения......................637
Нижние половины и блокировка...638

Использование спин-блокировок – итоги...639

Оглавление    15

Блокировка – типичные ошибки и рекомендации.......................................639
Типичные ошибки...640
Наставления по работе с блокировками..640

Решения..642
Резюме..642
Вопросы..643
Для дополнительного чтения...643

Глава 13. Синхронизация ядра – часть 2.....................................644
Использование типов atomic_t и refcount_t...644

Новый тип refcount_t и старый тип atomic_t...645
Работа с типами atomic_t и refcount_t..646

Примеры использования refcount_t в коде ядра...................................647
Атомарные операторы для 64-разрядных целых......................................650
Замечание о внутренней реализации..651

Использование атомарных RMW-операторов...652
Атомарные RMW-операции – работа с регистрами устройств................653

Использование поразрядных RMW-операторов...................................655
Пример использования атомарных поразрядных RMW-операторов..... 656
Эффективный поиск по битовой маске...659

Использование спин-блокировки чтения–записи.......................................660
Интерфейсы блокировки чтения–записи...661
Применение спин-блокировки чтения–записи на практике..................662
Проблемы производительности
спин-блокировок чтения–записи..664
Семафор чтения–записи...665

Основы кеширования в CPU, эффекты кеширования и ложное
разделение...666

Введение в процессорные кеши...666
Риски – когерентность кешей, проблемы производительности
и ложное разделение...668

В чем состоит проблема когерентности кешей?...................................668
Проблема ложного разделения..671

Безблокировочное программирование с помощью переменных
с копиями на каждом процессоре и RCU...675

Переменные с копиями на каждом процессоре..675
Работа с переменными с копиями на каждом процессоре..................676
Пример использования переменных с копиями на каждом
процессоре в модуле ядра...680
Примеры использования переменных с копиями
на каждом процессоре в ядре...684

Введение в безблокировочную технологию RCU
(прочитать–скопировать–обновить)...686

Как работает RCU?...687
Испытание RCU на практике..696
Простой пример – конкурентные читатели и писатели и их защита..... 697
RCU: подробная документация..706

16    Оглавление

Отладка блокировок в ядре...709
Конфигурирование ядра для отладки блокировок...................................710
Валидатор блокировок lockdep – раннее обнаружение
ошибок работы с блокировками...713
Обнаружение потенциальных взаимоблокировок
с помощью lockdep – несколько примеров..715

Пример 1 – обнаружение взаимоблокировки с собой..........................716
Пример 2 – обнаружение взаимоблокировки типа AB-BA
с помощью lockdep..722

Краткие замечания о lockdep – аннотации
и известные проблемы..727

К вопросу об аннотациях lockdep...727
К вопросу о lockdep – известные проблемы..728

Статистика блокировок ядра..729
Просмотр и интерпретация статистики блокировок в ядре................730

Введение в барьеры памяти...732
Пример использования барьеров памяти в драйвере устройства...........733

К вопросу о маркированных операциях доступа..................................735
Резюме..735
Вопросы..736
Для дополнительного чтения...736

Предметный указатель... 737

Оглавление    17

Об авторе

Кайван Н. Биллимориа учился кодированию на IBM PC своего отца (1983).
Он программировал на C и ассемблере для DOS, пока не открыл для себя
Unix, а вскоре после того и Linux! Кайван много работал в области системно­
го программирования для Linux, включая драйверы и встраиваемые системы.
Он принимал активное участие в нескольких коммерческих и свободных про­
ектах с открытым исходным кодом. Является автором нескольких драйверов
для Linux и большого числа проектов поменьше на GitHub. Его бесконечная
любовь к Linux помогает ему преподавать эти предметы инженерам, что он
успешно делает уже в течение двух десятков лет. Своим основным достижени­
ем он считает книги «Hands-On System Programming with Linux», «Linux Kernel
Programming» (и ее вторую часть) и «Linux Kernel Debugging». На досуге любит
заниматься бегом.

В первую очередь посвящаю книгу своей чудесной семье: родителям Надсу и Ди-
ане, супруге Дилшад, детям Шерой и Данешу, брату Дариусу и всем остальным.
Спасибо, что вы есть! Коллектив издательства Packt терпеливо и безупречно
помогал на протяжении всего пути – как обычно. Отдельное спасибо Райанне
Родригес, Ааарону Танна и Аникет Шетти – за своевременную поддержку от на-
чала и до конца работы!

О рецензенте

Чи-Тхан Хоанг в настоящее время работает главным архитектором по ПО ра­
диосвязи в компании Mavenir Systems, которая занимается радиосвязью стан­
дарта O-RAN 5G. За его плечами более тридцати лет опыта разработок преиму­
щественно в области встраиваемых систем (коммутаторы, маршрутизаторы,
Wi-Fi и мобильные сети) – от чипсетов до протоколов связи и, конечно, ядра
и ОСРВ. Впервые он познакомился с ядром Linux в 1993 году и до сих пор зани­
мается отладкой на уровне ядра. Получил степень бакалавра по электротехни­
ке в Шербрукском университете, Канада. Любит играть в теннис и постоянно
возится с электроникой и программами.

Предисловие от издательства

Отзывы и пожелания
Мы всегда рады отзывам наших читателей. Расскажите нам, что вы думаете об
этой книге – что понравилось или, может быть, не понравилось. Отзывы важны
для нас, чтобы выпускать книги, которые будут для вас максимально полезны.

Вы можете написать отзыв на нашем сайте www.dmkpress.com, зайдя на стра­
ницу книги и оставив комментарий в разделе «Отзывы и рецензии». Также
можно послать письмо главному редактору по адресу dmkpress@gmail.com;
при этом укажите название книги в теме письма.

Если вы являетесь экспертом в какой-либо области и заинтересованы в написа­
нии новой книги, заполните форму на нашем сайте по адресу http://dmkpress.com/
authors/publish_book/ или напишите в издательство по адресу dmkpress@gmail.com.

Список опечаток
Хотя мы приняли все возможные меры для того, чтобы обеспечить высокое
качество наших текстов, ошибки все равно случаются. Если вы найдете ошибку
в одной из наших книг – возможно, ошибку в основном тексте или программ­
ном коде, – мы будем очень благодарны, если вы сообщите нам о ней. Сделав
это, вы избавите других читателей от недопонимания и поможете нам улуч­
шить последующие издания этой книги.

Если вы найдете какие-либо ошибки в коде, пожалуйста, сообщите о них
главному редактору по адресу dmkpress@gmail.com, и мы исправим это в следу­
ющих тиражах.

Нарушение авторских прав
Пиратство в интернете по-прежнему остается насущной проблемой. Изда­
тельство «ДМК Пресс» очень серьезно относится к вопросам защиты автор­
ских прав и лицензирования. Если вы столкнетесь в интернете с незаконной
публикацией какой-либо из наших книг, пожалуйста, пришлите нам ссылку на
интернет-ресурс, чтобы мы могли применить санкции.

Ссылку на подозрительные материалы можно прислать по адресу
dmkpress@gmail.com.

Мы высоко ценим любую помощь по защите наших авторов, благодаря кото­
рой мы можем предоставлять вам качественные материалы.

Конец ознакомительного фрагмента.
Приобрести книгу можно

в интернет-магазине
«Электронный универс»

e-Univers.ru

https://e-univers.ru/catalog/T0016964/

	Об авторе
	О рецензенте
	Предисловие от издательства
	Предисловие
	Для кого предназначена эта книга
	Что добавлено во втором издании
	Краткое содержание книги
	Как извлечь максимум из этой книги
	Скачивание примеров кода
	Скачивание цветных иллюстраций
	Графические выделения
	Обратная связь
	Отзывы

	Глава 1
	Программирование ядра Linux – краткое введение
	Подготовка рабочего пространства ядра
	Технические требования
	Клонирование репозитория кода

	Глава 2
	Сборка ядра Linux из исходного кода –
часть 1
	Технические требования
	Предварительные условия для сборки ядра
	Нумерация версий ядра Linux
	Нумерация по пальцам на руках и ногах

	Цикл разработки ядра – основы
	Просмотр журнала ядра в Git из командной строки
	Просмотр журнала ядра в Git на странице GitHub
	Цикл разработки ядра конспективно
	Упражнение

	Типы деревьев исходного кода
	LTS-ядра – новый мандат
	Какое ядро мне использовать?

	Шаги сборки ядра из исходного кода
	Шаг 1 – получение исходного кода ядра Linux
	Скачивание дерева конкретного ядра
	Клонирование дерева Git

	Шаг 2 – распаковка исходного кода ядра
	Краткий обзор дерева исходного кода ядра

	Шаг 3 – конфигурирование ядра Linux
	Минимальные сведения о системе сборки Kconfig/Kbuild
	Как работает система Kconfig+Kbuild – минимальные сведения

	Получение конфигурации по умолчанию
	Получение хорошей отправной точки для конфигурации ядра
	Конфигурирование ядра как в дистрибутиве
	Получение оптимизированной конфигурации ядра с помощью localmodconfig
	Конфигурирование ядра для типичной встраиваемой
Linux-системы
	Просмотр всех доступных конфигурационных параметров

	Применение подхода localmodconfig
	Донастройка конфигурации ядра с помощью графического интерфейса make menuconfig
	Примеры работы с интерфейсом make menuconfig

	Конфигурирование ядра – дополнительные вопросы
	Поиск по меню
	Поиск различий в конфигурациях
	Использование скрипта config для просмотра и редактирования конфигурации ядра
	Конфигурирование безопасности ядра

	Настройка меню Kconfig и добавление своего собственного пункта
	О файлах Kconfig*
	Создание нового пункта в меню General Setup
	Несколько слово о языке Kconfig

	Резюме
	Упражнение
	Вопросы
	Для дополнительного чтения

	Глава 3
	Сборка ядра Linux из исходного кода – часть 2
	Технические требования
	Шаг 4 – сборка образа ядра и модулей
	Решение проблемы сертификата в Ubuntu

	Шаг 5 – установка модулей ядра
	Нахождение модулей ядра среди исходного кода
	Устанавливаем модули ядра
	Задание другого места установки модулей по умолчанию

	Шаг 6 – генерирование образа initramfs и подготовка начального загрузчика
	Генерирование образа initramfs – что под капотом

	О назначении каркаса initramfs
	Зачем нужен каркас initramfs?
	Основы процесса начальной загрузки в x86
	Еще о каркасе initramfs
	Заглянем внутрь образа initramfs

	Шаг 7 – конфигурирование начального загрузчика GRUB
	Конфигурирование GRUB – основы
	Выбор ядра, загружаемого по умолчанию
	Загрузка ВМ с помощью начального загрузчика GRUB
	Эксперименты с приглашением GRUB

	Проверка конфигурации нового ядра
	Сборка ядра для Raspberry Pi
	Шаг 1 – клонирование дерева исходного кода ядра Raspberry Pi
	Шаг 2 – установка инструментов кросс-разработки
x86_64-в-AArch64
	Шаг 3 – конфигурирование и сборка ядра AArch64 для Raspberry Pi

	Разные замечания по сборке ядра
	Минимальные требования к версии
	Сборка ядра для другой машины
	Наблюдение за ходом сборки ядра
	Синтаксис сокращенного выполнения в применении к процедуре сборки
	Отсутствующие заголовочные файлы для разработки с участием OpenSSL
	Как проверить, какие дистрибутивные ядра установлены?

	Резюме
	Вопросы
	Для дополнительного чтения

	Глава 4
	Написание первого модуля ядра – часть 1
	Технические требования
	Архитектура ядра – часть 1
	Пространство пользователя и пространство ядра
	Библиотечные функции и системные вызовы
	Компоненты ядра

	Исследование структуры LKM
	Каркас LKM
	Место модулей ядра в дереве исходного кода

	Написание первого модуля ядра
	Знакомство с C-кодом модуля «Hello, world»
	Пояснения к коду
	Заголовочные файлы ядра
	Модульные макросы
	Точки входа и выхода
	Возвращаемые значения

	Типичные операции над модулями ядра
	Сборка модуля ядра
	Выполнение модуля ядра
	Первое знакомство с функцией printk()
	Получение списка активных модулей ядра
	Выгрузка модуля из памяти ядра
	Наш вспомогательный скрипт lkm

	Запись в журнал ядра и функция printk
	Работа с кольцевым буфером в памяти ядра
	Протоколирование ядра и программа journalctl
	Уровни протоколирования printk
	Макросы pr_<foo>
	Запись на консоль
	Вывод на консоль Raspberry Pi
	Включение отладочных сообщений ядра
	Введение в динамическую отладку ядра

	Ограничение частоты сообщений printk
	Макросы с ограничением частоты

	Генерирование сообщений ядра из пространства пользователя
	Стандартизация вывода printk с помощью макроса pr_fmt
	Переносимость и спецификаторы формата в printk
	Что такое индексирование printk?

	Основы Makefile для сборки модуля ядра
	Резюме
	Вопросы
	Для дополнительного чтения

	Глава 5
	Написание первого модуля ядра – часть 2
	Технические требования
	«Улучшенный» шаблон Makefile для модулей ядра
	Конфигурирование «отладочного» ядра

	Кросс-компиляция модуля ядра
	Подготовка системы к кросс-компиляции
	Попытка 1 – установка переменных окружения ARCH и CROSS_COMPILE
	Попытка 2 – Makefile указывает на дерево исходного кода ядра для целевой платформы
	Попытка 3 – кросс-компиляция модуля ядра
	О совместимости ABI ядра Linux

	Попытка 4 – кросс-компиляция нашего модуля ядра
	Сводка ошибок, допущенных нами при кросс-компиляции, сборке и загрузке модулей, и способов их исправления

	Сбор минимальной информации о системе
	Лицензирование модулей ядра
	Лицензирование внутреннего кода ядра
	Лицензирование внешних модулей

	Эмуляция «библиотек» для модулей ядра
	Эмуляция библиотек путем компоновки нескольких исходных файлов
	Область видимости функций и переменных в модуле ядра
	Стек модулей
	Эксперименты со стеком модулей

	Эмуляция «библиотек» для модулей ядра – резюме и выводы

	Передача параметров модулю ядра
	Объявление и использование параметров модуля
	Получение и изменение параметров после вставки модуля
	Допустимые типы параметров ядра и их проверка
	Проверка параметров модуля
	Переопределение имени параметра модуля
	Параметры ядра, относящиеся к оборудованию

	Операции с плавающей точкой в ядре запрещены
	Как заставить ядро выполнять FP

	Автозагрузка модулей на этапе начальной загрузки системы
	Автозагрузка модулей – дополнительные сведения

	Модули ядра и безопасность – краткий обзор
	Параметры в файловой системе proc, влияющие на системный журнал
	О системном элементе dmesg_restrict
	О системном элементе kptr_restrict

	Криптографическое подписание модулей ядра
	Два режима подписания модулей

	Полный запрет модулей ядра
	LSM блокировки ядра – введение

	Наставление по стилю кодирования для разработчиков ядра
	Предложение своего кода в основную ветвь ядра
	С чего начать?

	Резюме
	Вопросы
	Для дополнительного чтения

	Глава 6
	Основы внутреннего устройства ядра –
процессы и потоки
	Технические требования
	Контексты процесса и прерывания
	Основы виртуального адресного пространства (ВАП) процесса
	Организация процессов, потоков и их стеков – в пространстве пользователя и в пространстве ядра
	Скрипт для получения числа процессов и потоков
	Организация пространства пользователя
	Организация пространства ядра
	Сводка сведений, относящихся к потокам, структурам задач и стекам

	Просмотр стеков в пространстве пользователя и ядра
	Традиционный подход к просмотру стеков

	Взгляд на ВАП процесса с высоты птичьего полета

	Структура задачи в ядре и доступ к ней
	Знакомство со структурой задачи
	Доступ к структуре задачи с помощью current
	Определение контекста

	Работа со структурой задачи с помощью current
	Встроенные в ядро вспомогательные функции и оптимизации
	Использование нашего модуля ядра для печати информации о контексте процесса
	Доказательство монолитности ОС Linux
	Использование printk с учетом безопасности

	Обход списков задач ядра
	Обход списка задач I – отображение всех процессов
	Обход списка задач II – отображение всех потоков
	Как отличить процесс от потока – TGID и PID

	Обход списка задач III – код

	Резюме
	Вопросы
	Для дополнительного чтения

	Глава 7
	Внутреннее устройство управления памятью – основы
	Технические требования
	Разделение VM
	Заглянем под капот – программа Hello, world
	Не только printf()

	Виртуальная адресация и трансляция адресов
	Переход от виртуального адреса к физическому – очень краткий обзор

	Разделение VM в 64-разрядных системах Linux
	Типичные разделения VM

	ВАП процесса – полная картина

	Исследование ВАП процесса
	Детальное исследование ВАП пользователя
	Непосредственный просмотр карты памяти процесса с помощью procfs
	Интерфейсы для просмотра карты памяти процесса

	Основы VMA

	Исследование ВАП ядра
	Верхняя память в 32-разрядных системах
	Модуль, показывающий информацию о ВАП ядра
	Макросы и переменные, описывающие структуру ВАП ядра
	Практикум – просмотр сведений о ВАП ядра
	ВАП ядра глазами procmap
	Практикум – сегмент пользователя
	Страница ловушки нуля
	Документация ядра по структуре памяти

	Рандомизация структуры памяти – KASLR
	Рандомизация памяти пользователя с помощью ASLR
	Рандомизация памяти ядра с помощью KASLR
	Опрос и изменение состояния KASLR с помощью скрипта

	Организация физической памяти
	Как организована физическая память
	Узлы и NUMA
	Зоны внутри узла

	Память прямого отображения и трансляция адресов
	Введение в модели физической памяти
	Краткое описание модели sparsemem[-vmemmap]

	Резюме
	Вопросы
	Для дополнительного чтения

	Глава 8
	Выделение памяти ядра для авторов модулей – часть 1
	Технические требования
	Введение в распределители памяти ядра
	Страничный распределитель и его использование
	Принципы работы страничного распределителя
	Организация списка свободных в страничном распределителе

	Как работает страничный распределитель
	Проработка нескольких сценариев
	Внутреннее устройство страничного распределителя – дополнительные детали
	Как использовать API страничного распределителя
	Флаги GFP
	Освобождение памяти с помощью страничного распределителя
	Рекомендации по выделению и освобождению памяти ядра
	Написание модуля ядра для демонстрации API страничного распределителя
	Страничный распределитель и внутренняя фрагментация

	Еще о флагах GFP
	Никогда не засыпайте в атомарных контекстах

	Страничный распределитель – за и против

	Слябовый распределитель и его использование
	Идея кеширования объектов
	Часто задаваемые вопросы об использовании слябовой памяти

	Как использовать API слябового распределителя
	Выделение слябовой памяти
	Освобождение слябовой памяти
	Функция kfree_sensitive() (ранее kzfree())
	Структуры данных – замечания о проектировании
	Слябовые кеши и kmalloc
	Модуль ядра, демонстрирующий использование слябового API

	Размерные ограничения функции kmalloc
	Тестируем пределы выделения памяти за один вызов

	Слябовый распределитель – дополнительные детали
	Управляемые API выделения памяти
	Дополнительные слябовые API
	Контрольные группы и память

	Подводные камни при использовании слябового распределителя
	Базовые положения и выводы
	Проверка выделения слябовой памяти с помощью
ksize() – случай 1
	Проверка выделения слябовой памяти с помощью ksize() – случай 2
	Интерпретация вывода в случае 2
	Графическое представление

	Нахождение внутренней фрагментации в ядре
	Простой способ с применением slabinfo
	Получение дополнительных сведений с помощью
alloc_traces и скрипта

	Слой слябового распределителя – плюсы и минусы
	Слой слябового распределителя – несколько слов о реализации в ядре

	Резюме
	Вопросы
	Для дополнительного чтения

	Глава 9
	Выделение памяти ядра для авторов модулей – часть 2
	Технические требования
	Создание специального слябового кеша
	Создание и использование специального слябового кеша в модуле ядра
	Шаг 1 – создание специального слябового кеша
	Шаг 2 – использование памяти из специального слябового кеша
	Шаг 3 – уничтожение специального кеша

	Специальный слябовый кеш – пример модуля ядра
	Получение полезной информации о слябовых кешах

	Резчики слябов
	Сводка плюсов и минусов слябового распределителя

	Отладка проблем с памятью в ядре – краткий обзор
	API выделения памяти vmalloc
	Как использовать функции семейства vmalloc
	Пример использования vmalloc()
	Краткое замечание о выделении памяти в пространстве пользователя и подкачке страниц по запросу
	Родственники vmalloc()
	Эта память выделена vmalloc (или принадлежит модулю)?
	Не уверены, какую функцию использовать? Попробуйте kvmalloc()
	Различные вспомогательные функции – vmalloc_exec() и vmalloc_user()
	Задание защиты памяти
	Сравнение функций kmalloc() и vmalloc()

	Выделение памяти в ядре – какой API использовать
	Наглядное представление API выделения памяти ядра
	Выбор подходящей функции для выделения памяти ядра
	Пара слов о DMA и CMA

	Восстановление памяти – важная служебная задача ядра
	Зонные предельные уровни и kswapd
	Новые многопоколенческие LRU-списки
	Эксперимент – гистограмма данных MGLRU

	Краткое введение в DAMON – мониторинг доступа к данным
	Выполнение рабочей нагрузки и наблюдение за ней с помощью интерфейса damo

	Остаться в живых – палач процессов
	Намеренный вызов палача процессов
	Вызов палача процессов с помощью магической SysRq
	Вызов палача процессов с помощью бешеного распределителя памяти

	Три политики перезаказа памяти
	Перезаказ виртуальной памяти с точки зрения функции
__vm_enough_memory()
	Случай 1: vm.overcommit_memory == 0
(режим по умолчанию, OVERCOMMIT_GUESS)
	Случай 2: vm.overcommit_memory == 2 (перезаказ VM выключен, OVERCOMMIT_NEVER) и vm.overcommit_ratio == 50
	Подкачка страниц по запросу и палач процессов
	Оптимизированное чтение (неотображенной памяти)

	Что такое оценка OOM
	Заключительные мысли о палаче процессов и контрольных группах
	Замечание о контрольных группах и полосе пропускания памяти

	Резюме
	Вопросы
	Для дополнительного чтения

	Глава 10
	Планировщик CPU – часть 1
	Технические требования
	Внутреннее устройство планирования CPU,
часть 1 – основы
	Что такое KSE в Linux?
	Конечный автомат процесса в Linux
	Политики планирования POSIX
	Приоритеты потоков

	Визуализация хода выполнения
	Использование gnome-system-monitor для визуализации хода выполнения
	Использование perf для визуализации хода выполнения
	Практическое занятие – командная строка
	Практическое занятие – графический интерфейс

	Другие подходы к визуализации потока выполнения

	Внутреннее устройство планирования CPU, часть 2
	Модульные классы планирования
	Концептуальный пример для понимания классов планирования
	Опрос класса планирования
	Краткое описание работы класса вполне справедливого планирования (CFS)
	Статистика планирования

	Запрос политики и приоритета планирования данного потока
	Внутреннее устройство планирования CPU, часть 3
	Вытесняемое ядро
	Динамическое задание режима вытеснения

	Кто вызывает код планировщика?
	Когда вызывается schedule()?
	Минимально необходимые сведения о структуре thread_info
	Обслуживание прерывания от таймера – установка TIF_NEED_RESCHED
	Контекст процесса – проверка TIF_NEED_RESCHED
	Точки входа в планировщик CPU – итоги
	Краткий обзор кода планировщика

	Резюме
	Вопросы
	Для дополнительного чтения

	Глава 11
	Планировщик CPU – часть 2
	Маска привязки к CPU, ее получение и установка
	Запрос и установка маски привязки потока к CPU
	Использование taskset для работы с маской привязки к CPU
	Задание маски привязки к CPU для потока ядра

	Запрос и установка политики и приоритета планирования потока
	Задание политики и приоритета для потока ядра
	Реальный пример – поточные обработчики прерываний

	Введение в контрольные группы
	Групповые контроллеры
	Исследование иерархии контрольных групп версии v2
	Активация и деактивация контроллеров
	Контрольные группы внутри иерархии
	Systemd и контрольные группы
	Наш скрипт для изучения контрольных групп

	Практическое занятие – ограничение потребления CPU с помощью контрольных групп версии v2
	Использование systemd для задания ограничений на потребление ресурсов службой

	Введение в эксплуатацию Linux в качестве ОСРВ
	О сборке стандартного ядра 6.x с заплатами RTL (для x86_64)

	Разные вопросы, относящиеся к планированию
	Несколько функций ядра, о которых стоит знать
	ОС ghOSt

	Резюме
	Вопросы
	Для дополнительного чтения

	Глава 12
	Синхронизация ядра – часть 1
	Критические секции, монопольное выполнение и атомарность
	Что такое критическая секция?
	Классический случай – i++ для глобальной переменной
	Концепции – блокировка
	Критические секции – основные положения

	Гонки за данные – более формальное определение

	Вопросы конкурентности в ядре Linux
	Многоядерные SMP-системы и гонки за данные
	Вытесняемые ядра, блокирующий ввод-вывод
и гонки за данные
	Аппаратные прерывания и гонки за данные
	Наставления по блокировке и взаимоблокировка

	Мьютекс или спин-блокировка?
Что и когда использовать
	Какую блокировку использовать – теоретически
	Какую блокировку использовать – практически

	Использование мьютексов
	Инициализация мьютекса
	Правильное использование мьютекса
	Функции захвата и освобождения мьютекса
	Захват мьютекса: прерываемый или непрерываемый сон?

	Захват мьютекса – пример драйвера
	Мьютекс – еще несколько замечаний
	Варианты API мьютексов
	Вариант I/O
	Семафор и мьютекс
	Инверсия приоритетов и RT-мьютекс
	Внутреннее устройство

	Использование спин-блокировок
	Спин-блокировка – простое использование
	Спин-блокировка – пример драйвера
	Тест – засыпание в атомарном контексте
	Тестирование модуля с ошибками на отладочном ядре 6.1

	Блокировка и прерывания
	Сценарий 1 – метод драйвера и обработчик аппаратного прерывания сериализованы
	Сценарий 2 – метод драйвера и обработчик аппаратного прерывания чередуются
	Сценарий 2 в одноядерной системе
	Сценарий 2 в многоядерной SMP-системе
	Решение проблемы в одноядерных и многоядерных системах с помощью функций spin_[un]lock_irq()
	Сценарий 3 – некоторые прерывания замаскированы, метод драйвера и обработчик прерывания чередуются

	Обработка прерывания, нижние половины и блокировка
	Обработка прерываний в Linux – основные положения
	Нижние половины и блокировка

	Использование спин-блокировок – итоги

	Блокировка – типичные ошибки и рекомендации
	Типичные ошибки
	Наставления по работе с блокировками

	Решения
	Резюме
	Вопросы
	Для дополнительного чтения

	Глава 13
	Синхронизация ядра – часть 2
	Использование типов atomic_t и refcount_t
	Новый тип refcount_t и старый тип atomic_t
	Работа с типами atomic_t и refcount_t
	Примеры использования refcount_t в коде ядра

	Атомарные операторы для 64-разрядных целых
	Замечание о внутренней реализации

	Использование атомарных RMW-операторов
	Атомарные RMW-операции – работа с регистрами устройств
	Использование поразрядных RMW-операторов
	Пример использования атомарных поразрядных RMW-операторов
	Эффективный поиск по битовой маске

	Использование спин-блокировки чтения–записи
	Интерфейсы блокировки чтения–записи
	Применение спин-блокировки чтения–записи на практике
	Проблемы производительности
спин-блокировок чтения–записи
	Семафор чтения–записи

	Основы кеширования в CPU, эффекты кеширования и ложное разделение
	Введение в процессорные кеши
	Риски – когерентность кешей, проблемы производительности и ложное разделение
	В чем состоит проблема когерентности кешей?
	Проблема ложного разделения

	Безблокировочное программирование с помощью переменных с копиями на каждом процессоре и RCU
	Переменные с копиями на каждом процессоре
	Работа с переменными с копиями на каждом процессоре
	Пример использования переменных с копиями на каждом процессоре в модуле ядра
	Примеры использования переменных с копиями на каждом процессоре в ядре

	Введение в безблокировочную технологию RCU (прочитать–скопировать–обновить)
	Как работает RCU?
	Испытание RCU на практике
	Простой пример – конкурентные читатели и писатели и их защита
	RCU: подробная документация

	Отладка блокировок в ядре
	Конфигурирование ядра для отладки блокировок
	Валидатор блокировок lockdep – раннее обнаружение ошибок работы с блокировками
	Обнаружение потенциальных взаимоблокировок с помощью lockdep – несколько примеров
	Пример 1 – обнаружение взаимоблокировки с собой
	Пример 2 – обнаружение взаимоблокировки типа AB-BA с помощью lockdep

	Краткие замечания о lockdep – аннотации
и известные проблемы
	К вопросу об аннотациях lockdep
	К вопросу о lockdep – известные проблемы

	Статистика блокировок ядра
	Просмотр и интерпретация статистики блокировок в ядре

	Введение в барьеры памяти
	Пример использования барьеров памяти в драйвере устройства
	К вопросу о маркированных операциях доступа

	Резюме
	Вопросы
	Для дополнительного чтения

	Предметный указатель

