Оглавление

Участники	1/
Об авторе	17
О рецензентах	
Предисловие	19
Для кого эта книга	
Какие темы описаны в книге	
Как извлечь из книги наибольшую пользу	
Загрузка файлов с примерами кода	
Code in Action	
Изображения в цвете	
Используемые обозначения	
Оставайтесь на связи	23
Отзывы	23
ЧАСТЬ 1. ВВЕДЕНИЕ – ОСНОВЫ РОБОТОТЕХНИКИ.	25
TACTO I. DDEMENUE OCHODDI PODOTOTEXHINKII.	<i>L J</i>
Глава 1. Введение в робототехнику	
Что такое робот?	
Продвинутые и впечатляющие роботы	
Марсоходы	
Роботы в доме	
Стиральная машина	
Другие домашние роботы	
Роботы в промышленности	
Роботы-манипуляторыРоботы на складах	
Роботы для участия в соревнованиях, учебные и любительские роботы.	
Выводы	
Задание	
Дополнительные материалы	
Глава 2. Структурные элементы робота – код и электроника	42
Технические условия	
Технические условия Внутреннее устройство робота	
Типы компонентов робота	
Типы двигателей	
Другие типы приводов	

Индикаторы состояния – дисплеи, световые и звуковые индикаторы	
Типы сенсоров Контроллеры и устройства ввода/вывода	
Контроллеры и устроиства ввода/выводаКонтакты ввода/вывода	
контакты ввода/вывода Контроллеры	
Контроллеры Модели контроллера Raspberry Pi	
Модели контроллера казрвен у F1	
Разработка аппаратного устройства робота	
Выводы	
Упражнения	
Дополнительные материалы	
Глава 3. Изучение Raspberry Pi	. 63
Технические требования	
Функциональные возможности Raspberry Pi	
Скорость и производительность	
Возможности подключения	
Преимущества Raspberry Pi 3A+	
Выбор способов подключения	
Контакты для подключения питания	
Шины передачи данных	
Входы/выходы общего назначения	
Платы расширения НАТ для Raspberry Pi	
Операционная система Raspberry Pi	
Запись образа OC Raspberry Pi на SD-карту	
Выводы	
Задание	
Дополнительные материалы:	71
Глава 4. Автономное управление роботом с помощью	72
Raspberry Pi Технические требования	
Гехнические треоования	
Настройка Wi-Fi и SSH на Raspberry Pi	
Поиск Raspberry Pi в сети	
Установка Bonjour для Windows	
Тест системы	
Устранение неполадок	
Подключение к Raspberry Pi посредством PuTTY и SSH	
Настройка конфигурации ОС Raspberry Pi	
Изменение имени Raspberry Pi	
Защита Raspberry Pi	
Перезагрузка и повторное подключение	
Обновление программного обеспечения на Raspberry Pi	
Завершение сеанса Raspberry Pi	
Выводы	

ЗаданиеДополнительные материалы	
•	
Глава 5. Создание резервных копий	
с помощью Git и SD-карты	88
Технические требования	88
Причины возникновения проблем при написании и изменени	и кода89
Повреждение SD-карты и потеря данных	89
Изменение кода или конфигурации	89
Стратегия 1 – хранение кода на ПК	
и его последующая передача	
Стратегия 2 – создание копий с помощью Git	
Стратегия 3 – резервное копирование данных SD-карты	
Windows	
Mac	
Linux	
Выводы	
Задание	
Дополнительные материалы	102
ЧАСТЬ 2. СОЗДАНИЕ АВТОНОМНОГО РОБОТ. ПОДКЛЮЧЕНИЕ ДАТЧИКОВ И ДВИГАТЕЛЕЙ K RASPBERRY PI	
ПОДКЛЮЧЕНИЕ ДАТЧИКОВ И ДВИГАТЕЛЕЙ К RASPBERRY PI	103
ПОДКЛЮЧЕНИЕ ДАТЧИКОВ И ДВИГАТЕЛЕЙ К RASPBERRY PI Глава 6. Сборка основания – колеса, питание и электропроводка	103
ПОДКЛЮЧЕНИЕ ДАТЧИКОВ И ДВИГАТЕЛЕЙ К RASPBERRY PI	103
ПОДКЛЮЧЕНИЕ ДАТЧИКОВ И ДВИГАТЕЛЕЙ К RASPBERRY PI	103105
ПОДКЛЮЧЕНИЕ ДАТЧИКОВ И ДВИГАТЕЛЕЙ К RASPBERRY PI	
ПОДКЛЮЧЕНИЕ ДАТЧИКОВ И ДВИГАТЕЛЕЙ К RASPBERRY PI Глава 6. Сборка основания – колеса, питание и электропроводка Технические требования Выбор набора шасси Размер Количество колес	
ПОДКЛЮЧЕНИЕ ДАТЧИКОВ И ДВИГАТЕЛЕЙ К RASPBERRY PI	
ПОДКЛЮЧЕНИЕ ДАТЧИКОВ И ДВИГАТЕЛЕЙ К RASPBERRY PI	
ПОДКЛЮЧЕНИЕ ДАТЧИКОВ И ДВИГАТЕЛЕЙ К RASPBERRY PI	
ПОДКЛЮЧЕНИЕ ДАТЧИКОВ И ДВИГАТЕЛЕЙ К RASPBERRY PI	
ПОДКЛЮЧЕНИЕ ДАТЧИКОВ И ДВИГАТЕЛЕЙ К RASPBERRY PI Глава 6. Сборка основания – колеса, питание и электропроводка Технические требования Выбор набора шасси Размер Количество колес Колеса и двигатели Простота Стоимость Заключение Выбор платы контроллера двигателя	
ПОДКЛЮЧЕНИЕ ДАТЧИКОВ И ДВИГАТЕЛЕЙ К RASPBERRY PI Глава 6. Сборка основания – колеса, питание и электропроводка Технические требования. Выбор набора шасси. Размер. Количество колес. Колеса и двигатели. Простота. Стоимость Заключение Выбор платы контроллера двигателя. Степень интеграции.	
ПОДКЛЮЧЕНИЕ ДАТЧИКОВ И ДВИГАТЕЛЕЙ К RASPBERRY PI	
ПОДКЛЮЧЕНИЕ ДАТЧИКОВ И ДВИГАТЕЛЕЙ К RASPBERRY PI Глава 6. Сборка основания – колеса, питание и электропроводка Технические требования Выбор набора шасси Размер Количество колес Колеса и двигатели Простота Стоимость Заключение Выбор платы контроллера двигателя Степень интеграции Использование контактов Размер	
ПОДКЛЮЧЕНИЕ ДАТЧИКОВ И ДВИГАТЕЛЕЙ К RASPBERRY PI	
ПОДКЛЮЧЕНИЕ ДАТЧИКОВ И ДВИГАТЕЛЕЙ К RASPBERRY PI	
ПОДКЛЮЧЕНИЕ ДАТЧИКОВ И ДВИГАТЕЛЕЙ К RASPBERRY PI Глава 6. Сборка основания – колеса, питание и электропроводка Технические требования Выбор набора шасси Размер Количество колес Колеса и двигатели Простота Стоимость Заключение Выбор платы контроллера двигателя Степень интеграции Использование контактов Размер Пайка Силовой источник питания	
ПОДКЛЮЧЕНИЕ ДАТЧИКОВ И ДВИГАТЕЛЕЙ К RASPBERRY PI Глава 6. Сборка основания – колеса, питание и электропроводка Технические требования Выбор набора шасси Размер Количество колес Колеса и двигатели Простота Стоимость Заключение Выбор платы контроллера двигателя Степень интеграции Использование контактов Размер Пайка Силовой источник питания Способы подключения	
ПОДКЛЮЧЕНИЕ ДАТЧИКОВ И ДВИГАТЕЛЕЙ К RASPBERRY PI Глава 6. Сборка основания – колеса, питание и электропроводка Технические требования Выбор набора шасси Размер Количество колес Колеса и двигатели Простота Стоимость Заключение Выбор платы контроллера двигателя Степень интеграции Использование контактов Размер Пайка Силовой источник питания Способы подключения Заключение	

Установка диска энкодера	122
Установка двигателя с помощью опор	
Установка поворотного колеса	
Установка ведущих колес	
Прокладка проводов	
Установка Raspberry Pi	
Установка источников питания	
Готовое основание для робота	
Подключение двигателей к Raspberry Pi	
Подключение проводов к НАТ-плате	
Автономное питание	
Выводы	
Задание	137
Дополнительные материалы	
France 7 Flavoure or management of the co	
Глава 7. Движение и повороты – код на Python	470
для управления двигателями	138
Технические требования	138
Разработка кода для проверки двигателей	139
Подготовка библиотек	
Тест – обнаружение НАТ-платы двигателя	139
Тест – демонстрация работы двигателей	141
Устранение неполадок	
Как работает код	
Рулевое управление робота	
Типы рулевого управления	
Рулевое управление нашего робота	
Создание объекта Robot – код для взаимодействия с роботом	
Для чего нужен объект?	
Что мы поместим в объект?	
Разработка сценария для следования по заданной траектории	
Выводы	
Задание	
Дополнительные материалы	157
Глава 8. Код на Python для работы с датчиками расстоян	ия158
Технические требования	
Выбор между оптическими и ультразвуковыми дальномерами	
Оптические дальномеры	
Ультразвуковые дальномеры	
Логические уровни и трансляторы логических уровней	
Зачем использовать два датчика?	
Подключение ультразвуковых дальномеров и обработка	101
получаемых ими данных	165
Установка датчиков на шасси	
Подключение выключателя питания	
·	

Сборка механизма	220
Установка механизма поворота и наклона на робота	
Разработка кода для механизма поворота и наклона	
Создание объекта Servos	
Добавляем сервоприводы в класс Robot	228
Разработка скрипта для движения «головы» робота	
по окружности	229
Запуск сценария	
Устранение неполадок	231
Реализация сканирующего сонара	232
Установка датчика	232
Установка библиотек	235
Поведенческий скрипт	235
Выводы	238
Задание	239
Дополнительные материалы	239
F 44 1/ D 1	240
Глава 11. Код на Python для работы с энкодерами	240
Технические требования	240
Измерение пройденного расстояния с помощью энкодеров	241
Где применяются энкодеры	
Типы энкодеров	241
Кодирование абсолютного или относительного положения	
Кодирование направления и частоты вращения	
Энкодеры, которые мы будем использовать	
Установка энкодеров на робота	246
Подготовка энкодеров	
Снятие Raspberry Pi	
Установка энкодеров на шасси	
Подключение энкодеров к Raspberry Pi	
Измерение пройденного расстояния с помощью кода на Python	
Ведение журнала	
Простой подсчет	
Добавляем энкодеры в объект Robot	
Преобразование тактов в миллиметры	
Движение по прямой	259
Коррекция отклонения с помощью ПИД-регуляторов	
Создание объекта ПИД-регулятора	261
Создание кода для движения по прямой	
Устранение неполадок	
Перемещение на определенное расстояние	266
Рефакторинг преобразования единиц измерения для класса	
EncoderCounter	
Настройка констант	267
Разработка поведенческого скрипта для движения	
на определенное расстояние	
Выполнение точного поворота	
Создание функции drive_arc	274

Выводы	
Задание	
Дополнительные материалы	276
Глава 12. Код на Python для работы с IMU	278
Технические требования	279
Подробнее об инерциальных измерительных модулях (IMU).	279
Предлагаемые модели IMU	
Пайка – подсоединение контактов к IMU	281
Создание паянного соединения	
Установка IMU на робота	
Физическое размещение	283
Подключение IMU к Raspberry Pi	
Считывание данных датчика температуры	
Установка программного обеспечения	
Устранение неполадок	
Считывание регистра температуры	
Устранение неполадок	
Упрощение командной строки VPython	
Считывание данных гироскопа с помощью Python	
Как работает гироскоп	
Добавление гироскопа в интерфейс	
Построение графика данных гироскопа	
Считывание данных акселерометра с помощью Python	
Как работает акселерометр	
Добавление акселерометра в интерфейс	
Отображение данных акселерометра в виде вектора	
Считывание данных магнитометра	
Как работает магнитометр	
Добавление интерфейса магнитометра	
Отображение данных магнитометра	
Выводы	
Задание	
Дополнительные материалы	306
ЧАСТЬ 3. СЛУХ И ЗРЕНИЕ – «ИНТЕЛЛЕКТУАЛ	L LILIE
ДАТЧИКИ ДЛЯ РОБОТА	309
Глава 13. Система технического зрения робота –	
камера Рі и OpenCV	311
Технические требования	311
Настройка камеры Raspberry Pi	312
Установка камеры на механизм поворота и наклона	
Подключение камеры	
Настройка программного обеспечения для задач	
компьютерного зрения	318

II v	710
Настройка программного обеспечения камеры Рі	
Получение изображения с Raspberry Pi	
Установка OpenCV и вспомогательных библиотек	319
Создание приложения для потоковой передачи данных	=00
камеры Raspberry Pi	
Разработка потокового сервера OpenCV	
Создание объекта CameraStream	
Создание главного приложения сервера изображений	323
Создание шаблона	
Запуск сервера изображений	
Устранение неполадок	
Запуск фоновых задач во время потоковой передачи	
Создание ядра веб-приложения	
Разработка управляемого поведенческого скрипта	
Создание шаблона элемента управления	
Запуск управляемого сервера изображений	
Отслеживание цветных объектов с помощью кода на Python	
Преобразование изображения в информацию	
Усовершенствование ПИД-регулятора	
Создание компонентов поведенческого скрипта	
Запуск поведенческого скрипта	
Настройка параметров ПИД-регулятора	
Устранение неполадок	
Отслеживание лиц с помощью кода на Python	
Поиск объекта на изображении	
Сканирование базовых признаков	
План поведенческого сценария отслеживания лиц	
Создание кода для сценария отслеживания лиц	
Запуск поведенческого скрипта отслеживания лиц	
Устранение неполадок	
Выводы	
Задание	
Дополнительные материалы	355
Глава 14. Код на Python для отслеживания	
линий с помощью камеры	757
-	
Технические требования	
Введение в отслеживание линий	
Что такое отслеживание линий?	
Использование в промышленности	
Типы алгоритмов отслеживания линий	
Создание тестового маршрута	
Материалы для создания тестового маршрута	
Создание линии	361
Конвейерная обработка данных компьютерного зрения	
для следования по линиям	362

Устранение неполадок	409
Создание еще одного намерения	
Выводы	
Задание	
Дополнительные материалы	
Глава 16. Погружаемся глубже в работу IMU	.414
Технические требования	414
Разработка кода для виртуального робота	415
Создание модели робота в VPython	
Определение параметров вращения с помощью гироскопа	419
Калибровка гироскопа	
Изменение положения виртуального робота на основе	
данных гироскопа	
Измерение углов тангажа и крена с помощью акселерометра	426
Определение углов тангажа и крена на основе векторных	
данных акселерометра	
Сглаживание данных акселерометра	
Совместная обработка данных акселерометра и гироскопа	
Определение направления с помощью магнитометра	
Калибровка магнитометра	433
Приблизительное определение направления робота	
с помощью магнитометра на практике	439
Объединение показаний датчиков для ориентирования робота	
Управление роботом на основе показаний IMU	
Выводы	
Задание	
Дополнительные материалы	449
Глава 17. Разработка кода на Python для управления	4=4
роботом с помощью смартфона	
Технические требования	452
Когда голосовое управление не работает	
(или Зачем нам нужно управлять роботом)	
Режимы меню – выбор поведенческих сценариев	
Управление режимами робота	
Устранение неполадок	
Веб-сервер	
Шаблон	
Запуск приложения	
Устранение неполадок	
Выбор контроллера – как лучше управлять роботом и почему	
Обзор будущего приложения	461
Подготовка Raspberry Pi к удаленному управлению – основы системы	464
управления	
Расширение кода ядра изображения	
Разработка сценария ручного управления	466

Шаблон (веб-страница)	468
Таблица стилей	
Разработка кода для ползунков	
Запуск системы	
Устранение неполадок	478
Реализация полного управления роботом через смартфон	479
Совместимость режимов меню с поведенческими сценариями,	
использующими Flask	
Загрузка видеосервисов	
Стилизация меню	
Реализация запуска меню вместе с Рі	
Добавляем светодиоды на сервер меню	
Автоматический запуск с помощью инструмента systemd Выводы	
Задание	
Дополнительные материалы	
- 11 - 12 - 12 - 12 - 12 - 12 - 12 - 12	
Часть 4. Дальнейшее изучение робототехники	491
Глава 18. Дальнейшее развитие навыков	
программирования робототехнических систем	493
Робототехнические интернет-сообщества – форумы и социальные сети	
Каналы на YouTube, с которыми стоит ознакомиться	
Технические вопросы – куда обратиться за помощью	496
Мероприятия – соревнования, площадки для совместной	40.4
работы и встречи	
Площадки для совместной работы	
Maker Faire, Raspberry Jam и Coder Dojo	
Соревнования Навыки, которые стоит освоить, – 3D-печать, пайка,	490
павыки, которые стоит освоить, – 5D-печать, паика, печатные платы и станки с ЧПУ	100
Навыки проектирования	
Навыки обработки компонентов и сборки	
Навыки работы с электроникой	
Подробнее о компьютерном зрении	
Книги	
Онлайн-курсы	504
Социальные сети	505
Переход к машинному обучению	
Операционная система для роботов	
Выводы	
Дополнительные материалы	507
Глава 19. Планирование следующего робототехнического	
проекта – подводим итоги	502
•	
Технические требования	
Представляем нового робота – как он будет выглядеть	. 508

16 🌣 Оглавление

Предметный указатель	517
Выводы	516
Рассказываем миру о проекте	515
Планирование кода	
Выбор компонентов	
Создание блок схемы	510

Участники

O6 ARTOPE

Дэнни Стейпл (Danny Staple) занимается созданием роботов и гаджетов в качестве хобби, снимает видеоролики, посвященные робототехнике, а также является участником таких мероприятий, как Pi Wars и Arduino Day. С 2000 года профессионально занимается разработкой программного обеспечения. В 2009 году начал заниматься программированием на Python, уделяя особое внимание процессам разработки и автоматизации. Большую часть своей профессиональной деятельности Дэнни посвятил работе со встроенными системами, включая встроенные системы Linux. Сейчас является наставником в CoderDojo Ham, где обучает детей программированию. Ранее руководил клубами LEGO Robotics.

Вместе с детьми Дэнни создал таких роботов, как TankBot, SkittleBot, Bangers N Bash (робот из ланчбокса), Big Ole Yellow (еще один гусеничный робот), ArmBot и SpiderBot.

Я хотел бы поблагодарить Дэвида Андерсона (David Anderson) за ценные советы относительно моих идей и мотивацию. Также я выражаю благодарность Бену Наттоллу (Ben Nuttall) и Дейву Джонсу (Dave Jones) (@waveform80) за разработку GPIOZero и ответы на мои бесчисленные вопросы в Twitter. Со встречи с Дейвом Джонсом (Dave Jones), автором библиотеки PiCamera, в ресторане Кардиффа начался мой путь к изучению компьютерного зрения. И наконец, я благодарю своих детей, Хелену (Helena) и Джонатана (Jonathan), за их поддержку, терпение и помощь при работе с графиками.

О РЕЦЕНЗЕНТАХ

Лео Vaйт (Leo White) – выпускник Кентского университета (University of Kent), профессиональный инженер-программист, интересующийся электроникой, 3D-печатью и робототехникой. Сначала он занимался программированием на Commodore 64, затем разработал несколько приложений для Acorn Archimedes, а сейчас на постоянной основе занимается разработкой кода для ТВ-приставок. На основе Raspberry Pi Лео создавал роботов из детских игрушек и роботов-манипуляторов, попутно описывая этот процесс и свой опыт в блоге. Также проводил презентации на Raspberry Jams и участвовал в соревнованиях Pi Wars.

Рамкумар Гандинатан (Ramkumar Gandhinathan) – исследователь и профессиональный робототехник. Своего первого робота создал в шестом классе. Благодаря личным и профессиональным связям он занимается робототехникой уже более 15 лет. Рамкумар создал более 80 различных роботов. Общий

профессиональный опыт в области робототехники составляет 7 лет (4 года полной занятости и 3 года неполной/стажировки). На протяжении 5 лет он работал с ROS (Robot Operating System – операционная система для роботов). В рамках профессиональной карьеры Рамкумар разработал свыше 15 решений ROS для промышленных роботов. Также он увлекается созданием и пилотированием дронов. В круг его исследовательских интересов и увлечений входит SLAM (Simultaneous Localization And Mapping – одновременная локализация и построение карты), планирование движений, совместное использование данных датчиков, коммуникация между роботами и системная интеграция.

Предисловие

Эта книга посвящена созданию интеллектуального робота и разработке кода для его поведенческих сценариев. Вы узнаете о навыках, которые требуются для создания робота из отдельных компонентов, а также о тонкостях их выбора. Для построения робота из этой книги вы будете использовать такие компоненты, как датчики, двигатели, камеры, микрофоны, динамики, светодиоды и Raspberry Pi.

Далее в книге вы узнаете, как разработать код для перечисленных компонентов. Вы будете использовать язык программирования Python, а также немного HTML/CSS и JavaScript.

Все компоненты робота, описанные в этой книге, широко доступны. Приведенные примеры кода призваны продемонстрировать, как работает та или иная технология. В дальнейшем вы сможете комбинировать разные части программного и аппаратного обеспечения, чтобы создавать сложных роботов с более интересными поведенческими сценариями.

В книге пересекаются темы программирования и робототехники, а также раскрывается ряд специализированных тем, таких как компьютерное зрение и голосовое управление.

Для кого эта книга

Книга подойдет как новичкам в области программирования, так и опытным программистам, желающим применить свои навыки в аппаратном проекте. Для этого не обязательно быть экспертом, достаточно быть способным ввести несколько строк кода и уметь работать с циклами, условиями и функциями. В книге затрагивается тема объектно-ориентированного программирования, но вам не обязательно разбираться в нем перед прочтением.

Для создания робота из этой книги вам не понадобится специально оборудованная мастерская – достаточно уметь паять и крепить компоненты болтами. Позже мы поговорим об этом подробнее.

Вам вовсе не обязательно иметь опыт работы с электроникой или созданием каких-либо устройств. В книге представлены базовые понятия, и я надеюсь, что это вызовет у вас здоровый интерес к дальнейшему изучению. Самое главное – это ваше желание создать робота и научить его делать интересные вещи.

Какие темы описаны в книге

В главе 1 рассказывается о том, как устроены роботы, как они применяются на производстве и в быту, а также описываются некоторые примеры роботов, созданных новичками.

В главе 2 подробно рассказывается о компонентах робота и о том, как их выбирать. Также здесь представлены блок-схемы будущей системы и кода.

В главе 3 говорится о микрокомпьютере Raspberry Pi, его подключении и операционной системе – Raspbian Linux. В этой главе вы запишете образ операционной системы на SD-карту и научитесь использовать ее в роботе.

В главе 4 рассказывается, как реализовать беспроводную связь робота с Raspberry Pi.

В главе 5 вы узнаете, какие неполадки могут возникнуть в коде и как предотвратить его потерю, сохранив копии в репозиториях.

В главе 6 мы переходим к сборке основания робота. Здесь рассказывается о тонкостях выбора компонентов и проверке их размещения.

В главе 7 показано, как разработать код для движения робота. Также здесь закладываются основы для кода из следующих глав.

В главе 8 мы добавим роботу датчики и разработаем для них код, благодаря которому робот сможет самостоятельно обходить стены и препятствия.

В главе 9 рассказывается, как добавить роботу цветные светодиоды. Здесь вы узнаете, как использовать дополнительные выводы для отладки или просто для развлечения.

В главе 10 рассказывается о сервоприводах и их использовании для позиционирования сенсорной головки, а также «конечностей» робота.

В главе 11 показано, как создать код для получения точной информации о перемещении колес с помощью одометра/тахометра. Здесь ваш робот научится ездить по прямой, выполнять точные повороты и определять, насколько далеко он переместился. В этой главе мы впервые поговорим о ПИД-регуляторах.

В главе 12 рассказывается об **инерциальном измерительном модуле** (IMU), который включает датчики для измерения температуры, ускорения, скорости вращения и магнитных полей. В этой главе мы впервые поговорим о пайке и VPython.

В главе 13 вы узнаете, как получать данные с камеры, и научите робота передвигаться, основываясь на компьютерном зрении. Также здесь показано, как осуществляется потоковая передача обработанного видео в браузер.

В главе 14 рассказывается, как научить робота следовать по линиям с помощью камеры Raspberry Pi.

В главе 15 описывается разработка системы управления роботом с помощью голосового помощника. Вы научитесь использовать голосовые команды и получать от робота ответы.

В главе 16 рассказывается об объединении датчиков, описанных в главе 12. Вы узнаете, как использовать их для определения положения робота, а также разработаете поведенческий скрипт, который будет действовать как компас.

В главе 17 мы переходим к созданию веб-приложения меню и панели управления, похожей на геймпад. С помощью этой системы вы сможете управлять роботом со смартфона, опираясь на видео с камеры.

В главе 18 вы узнаете больше о мире робототехники. Здесь рассказывается о различных робототехнических сообществах, потенциальных областях развития и соревнованиях роботов.

В заключительной главе 19 обобщается представленная в книге информация, а также предлагаются варианты по созданию следующего робототехнического проекта.

Прежде чем начать работать с книгой, я рекомендую вам потренироваться в работе с текстовыми языками программирования. Познакомьтесь с основными переменными, условными операторами, циклами и функциями.

Для работы вам потребуется компьютер с операционной системой macOS, Linux или Windows, доступ к интернету и Wi-Fi.

Что касается навыков ручного труда, я думаю, что вы умеете пользоваться отверткой и без проблем справитесь с кропотливой работой. Также я надеюсь, что вас не пугает пайка.

Представленные в книге примеры кода были протестированы на Python 3 с помощью Raspbian Buster и Picroft Buster Keaton. Их установка описывается в тексте соответствующих разделов. Также в тексте рассказывается, как выбрать нужные аппаратные компоненты.

Программное/аппаратное обеспечение, используемое в книге	Требования к операционной системе	
Python 3	Raspbian Buster	
Picroft/Mycroft	Picroft Buster Keaton	
OpenCV	Raspbian Buster/Python 3	
VPython	Raspbian Buster/Python 3	
Flask	Python 3	

Прежде чем приобрести какие-либо аппаратные компоненты, ознакомьтесь с главами, в которых рассказывается, как правильно их выбрать.

Если вы используете электронную версию книги, я рекомендую вводить код самостоятельно или брать его из репозитория на GitHub (ссылка предоставлена в следующем разделе). Это позволит избежать ошибок, связанных с неправильным копированием/вставкой фрагментов кода.

Загрузка файлов с примерами кода

Все файлы с кодом из этой книги доступны через ваш аккаунт на веб-сайте www.packt.com. Если вы приобрели книгу в другом месте, зарегистрируйтесь, перейдите по адресу https://www.packtpub.com/support и оставьте запрос на отправку файлов по электронной почте.

Загрузить файлы с кодом вы можете следующим образом.

- 1. Войдите (или зарегистрируйтесь) в аккаунт на веб-сайте www.packt.com.
- 2. Перейдите во вкладку **Support** (Поддержка).
- 3. Нажмите **Code Downloads** (Загрузить код).
- 4. В строке поиска введите название книги и следуйте дальнейшим инструкциям на экране.

После загрузки файлов нужно обязательно распаковать или извлечь папки с помощью новейшей версии одной из следующих программ:

- O WinRAR/7-Zip для Windows;
- O Zipeg/iZip/UnRarX для Mac;
- O 7-Zip/PeaZip для Linux.

Комплект исходного кода для этой книги размещен на GitHub по адресу https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition. В случае обновления кода репозиторий также обновится.

По agpecy https://github.com/PacktPublishing/ доступны другие комплекты исходного кода из нашего богатого каталога книг и видео. Ознакомьтесь и с ними!

CODE IN ACTION

Видеоролики Code in Action для этой книги доступны по адресу http://bit.ly/3bu5wHp.

Изображения в цвете

По адресу https://static.packt-cdn.com/downloads/9781839218804_ColorImages.pdf вы можете скачать файл, содержащий все изображения (в том числе скриншоты и схемы) из книги, в формате PDF.

Используемые обозначения

В книге используется ряд текстовых обозначений.

Код в тексте: так в тексте выделяются фрагменты кода, названия таблиц баз данных, папок, файлов, расширения файлов, составные имена файлов, пути, фиктивные URL-адреса, фрагменты пользовательского ввода и ссылки на Twitter. Например: «... задает параметр color для светодиода с номером led_number».

Блоки кода выглядят следующим образом:

```
cyan_rgb = [int(c * 255) for c in cyan]
```

Элементы или строки кода, на которые нужно обратить особое внимание, выделяются жирным шрифтом:

```
right_distance = self.robot.right_distance_sensor.distance
# Отображение
self.display_state(left_distance, right_distance)
```

Ввод или вывод командной строки выглядит так:

```
>>> r.leds.show()
```

Жирный шрифт: так выделяются новые термины, важные части текста или текст, который вы должны видеть на экране. Например, текст из меню или диалоговых окон: «Выберите **4** для **Other USB Microphone** (Другой USB-микрофон) и проверьте звук».

Советы и важные примечания

Они выделяются следующим образом.

Оставайтесь на связи

Мы всегда рады обратной связи.

Общие вопросы: любые вопросы насчет этой книги вы можете задать в электронном письме по адресу customercare@packtpub.com, указав в теме письма название книги.

Ошибки и опечатки: мы приложили все усилия, чтобы содержание было точным, однако ошибки все же случаются. Если вы нашли ошибку в этой книге, сообщите нам об этом. Для этого перейдите по адресу www.packtpub.com/support/errata, выберите нужную книгу, щелкните по ссылке **Errata Submission Form** (Форма отправки сведений об ошибках) и введите ваше сообщение.

Нарушение авторского права: если вы столкнетесь с незаконными копиями наших книг, размещенными в интернете в любой форме, сообщите нам адрес или название веб-сайта. Для этого отправьте письмо на электронный адрес copyright@packt.com со ссылкой на материал.

Для авторов: по вопросам сотрудничества авторы могут обратиться по адресу https://authors.packtpub.com.

Отзывы

Почему бы не оставить отзыв о прочитанной книге на сайте, где вы ее приобрели? Благодаря вам потенциальные читатели перед приобретением смогут ознакомиться с вашим непредвзятым мнением, а издательство Packt и авторы увидят отзыв о своем продукте. Спасибо!

Больше информации на веб-сайте www.packt.com.

Конец ознакомительного фрагмента. Приобрести книгу можно в интернет-магазине «Электронный универс» e-Univers.ru