
Содержание

От издательства ..10

Глава 1. Введение..11
1.1. Область применимости...12
1.2. Аудитория..14
1.3. Практическое применение...14
1.4. Как устроен этот стандарт кодирования..15
1.5. Связь со стандартом кодирования CERT C...20
1.6. Правила и рекомендации...22
1.7. Выбор и проверка инструмента...23
1.8. Тестирование на соответствие...24
1.9. Процесс разработки...26
1.10. Свойства системы..26
1.11. Автоматически сгенерированный код...27
1.12. Государственное регулирование..28
1.13. Благодарности..30

Глава 2. Объявления и инициализация (DCL)..32
2.1. DCL50-CPP. Не определяйте вариадические функции в стиле C..................32
2.2. DCL51-CPP. Не объявляйте и не определяйте зарезервированный
идентификатор..36
2.3. DCL52-CPP. Никогда не употребляйте для ссылочного типа
квалификаторы const и volatile...41
2.4. DCL53-CPP. Не пишите синтаксически неоднозначных объявлений..........43
2.5. DCL54-CPP. Перегружайте функции выделения и освобождения
памяти� одновременно в одной и той же области видимости..............................48
2.6. DCL55-CPP�. Избегайте утечки информации при передаче объекта
класса через границу доверия...52
2.7. DCL56-CPP. Избегайте циклов при инициализации статических
объектов...60
2.8. DCL57-CPP. Не позволяйте исключениям выходить за пределы
деструкторов или функций освобождения памяти...65
2.9. DCL58-CPP. Не изменяйте стандартные пространства имен........................70
2.10. DCL59-CPP. Не определяйте безымянное пространство имен
в заголовочном файле..75
2.11. DCL60-CPP. Соблюдайте правило одного определения...............................82

6   Содержание

Глава 3. Выражения (EXP)..89

3.1. EXP50-CPP. Не допускайте зависимости от порядка вычисления для
получения побочных эффектов..89
3.2. EXP51-CPP. Не удаляйте массив по указателю на некорректный тип.........95
3.3. EXP52-CPP. Не полагайтесь на побочные эффекты в невычисляемых
операндах...97
3.4. EXP53-CPP. Не читайте неинициализированную память............................101
3.5. EXP54-CPP. Не обращайтесь к объекту за пределами времени
его жизни..106
3.6. EXP55-CPP. Не обращайтесь
к cv-квалифицированному объекту через cv-неквалифицированный тип.....116
3.7. EXP56-CPP. Не вызывайте функцию с несовпадающей языковой
компоновкой...120
3.8. EXP57-CPP. Не приводите и не удаляйте указатели на неполные
классы...123
3.9. EXP58-CPP. Передавайте va_start объект правильного типа.......................128
3.10. EXP59-CPP. Используйте offsetof() только с допустимыми типами
и членами...132
3.11. EXP60-CPP. Не передавайте объект типа с нестандартным
размещением в памяти через границы выполнения..135
3.12. EXP61-CPP. Лямбда-объект не должен жить дольше, чем объекты,
на которые ведут захваченные им ссылки..140
3.13. EXP62-CPP. Не обращайтесь к битам представления объекта,
которые не являются частью представления значения объекта.......................143
3.14. EXP63-CPP. Не полагайтесь на значение перемещенного объекта..........147

Глава 4. Целые (EXP)..154

4.1. INT50-CPP. Не приводите к значению перечисления, выходящему
за пределы диапазона..154

Глава 5. Контейнеры (CTR)...158

5.1. CTR50-CPP. Следите за тем, чтобы индексы и итераторы
контейнеров не выходили за пределы допустимого диапазона.......................158
5.2. CTR51-CPP. Используйте действительные ссылки, указатели
и итераторы для ссылки на элементы контейнера..163
5.3. CTR52-CPP. Следите за тем, чтобы в библиотечных функциях не было
переполнения..168
5.4. CTR53-CPP. Используйте корректные итераторные диапазоны................172
5.5. CTR54-CPP. Не вычитайте итераторы, ссылающиеся на разные
контейнеры..175
5.6. CTR55-CPP. Не используйте аддитивный оператор для итератора,
если в результате возможно переполнение..179
5.7. CTR56-CPP. Не пользуйтесь арифметикой указателей
для полиморфных объектов..182

Содержание   7

5.8. CTR57-CPP. Предоставляйте правильный предикат упорядочения...........186
5.9. CTR58-CPP. Предикатные объекты-функции не должны быть
изменяемыми..189

Глава 6. Символы и строки (STR)...194

6.1. STR50-CPP. Следите за тем, чтобы в строке было достаточно места
для символьных данных и завершающего нулевого символа...........................194
6.2. STR51-CPP. Не пытайтесь создать std::string из нулевого указателя.........197
6.3. STR52-CPP. Используйте действительные ссылки, указатели
и итераторы для ссылки на элементы basic_string..200
6.4. STR53-CPP. Проверяйте диапазон при доступе к элементам......................203

Глава 7. Управление памятью (MEM)..207

7.1. MEM50-CPP. Не обращайтесь к освобожденной памяти..............................207
7.2. MEM51-CPP. Правильно освобождайте динамически выделенные
ресурсы...213
7.3. MEM52-CPP. Обнаруживайте и обрабатывайте ошибки выделения
памяти..225
7.4. MEM53-CPP. Явно конструируйте и уничтожайте объекты
при ручном управлении временем жизни объекта...230
7.5. MEM54-CPP. Передавайте оператору new с размещением указатели
на правильно выровненную память достаточного размера..............................234
7.6. MEM55-CPP. Соблюдайте требования к замене механизма
управления динамической памятью...239
7.7. MEM56-CPP. Не сохраняйте уже имеющий владельца указатель
в несвязанном умном указателе...242
7.8. MEM57-CPP. Не используйте оператор new по умолчанию
для сверхвыровненных типов...246

Глава 8. Ввод-вывод (FIO)..250

8.1. FIO50-CPP. Не чередуйте ввод и вывод в файловый поток
без промежуточного позиционирования..250
8.2. FIO51-CPP. Закрывайте файлы, когда в них отпала необходимость..........252

Глава 9. Исключения и обработка ошибок (ERR)......................................256

9.1. ERR50-CPP. Не завершайте программу внезапно...256
9.2. ERR51-CPP. Обрабатывайте все исключения...261
9.3. ERR52-CPP. Не используйте setjmp() или longjmp()......................................264
9.4. ERR53-CPP. Не ссылайтесь на базовые классы или на данные-члены
класса в обработчике функционального блока try конструктора или
деструктора..267
9.5. ERR54-CPP. Обработчики исключений должны быть упорядочены
по типу параметра от наиболее производного к наименее
производному..269

8   Содержание

9.6. ERR55-CPP. Обращайте внимание на спецификации исключений...........271
9.7. ERR56-CPP. Гарантируйте безопасность относительно исключений.........274
9.8. ERR57-CPP. Не допускайте утечки ресурсов при обработке
исключений..278
9.9. ERR58-CPP. Обрабатывайте все исключения, возбужденные до начала
выполнения main()...283
9.10. ERR59-CPP. Не возбуждайте исключения, пересекающие границы
выполнения..288
9.11. ERR60-CPP. Объекты исключений должны иметь копирующий
конструктор, не возбуждающий исключений..290
9.12. ERR61-CPP. Перехватывайте исключения по ссылке на l-значение........294
9.13. ERR62-CPP. Обнаруживайте ошибки преобразования строки
в число..297

Глава 10. Объектно ориентированное программирование (OOP)......301

10.1. OOP50-CPP. Не вызывайте виртуальные функции из конструкторов
и деструкторов...301
10.2. OOP51-CPP. Не срезайте производные объекты...305
10.3. OOP52-CPP. Не удаляйте полиморфный объект без виртуального
деструктора..311
10.4. OOP53-CPP. Записывайте инициализаторы членов в конструкторе
в каноническом порядке..314
10.5. OOP54-CPP. Корректно обрабатывайте присваивание себе......................317
10.6. OOP55-CPP. Не используйте операторы указателя на член
для доступа к несуществующим членам...321
10.7. OOP56-CPP. Соблюдайте требования к подмененному обработчику......324
10.8. OOP57-CPP. Предпочитайте специальные функции-члены
и перегруженные операторы функциям из стандартной библиотеки C..........327
10.9. OOP58-CPP. Операции копирования не должны изменять исходный
объект..334

Глава 11. Конкурентность (CON)...338

11.1. CON50-CPP. Не уничтожайте захваченный мьютекс..................................338
11.2. CON51-CPP. Освобождайте захваченные блокировки
при возникновении исключений...341
11.3. CON52-CPP. Предотвращайте гонки за данные при доступе
к битовым полям из нескольких потоков...343
11.4. CON53-CPP. Предотвращайте взаимоблокировку, захватывая
блокировки в предопределенном порядке...347
11.5. CON54-CPP. Обертывайте циклом функции, которые могут
неожиданно проснуться...351
11.6. CON55-CPP. Помните о потокобезопасности и живучести, когда
используете условные переменные...355
11.7. CON56-CPP. Не используйте пробный захват нерекурсивного
мьютекса, уже захваченного вызывающим потоком..361

Содержание   9

Глава 12. Разное (MSC)..365
12.1. MSC50-CPP. Не используйте std::rand() для генерирования
псевдослучайных чисел...365
12.2. MSC51-CPP. Правильно инициализируйте свой генератор случайных
чисел..367
12.3. MSC52-CPP. Функции, возвращающие значение, должны возвращать
его на всех путях выполнения...371
12.4. MSC53-CPP. Не возвращайте управление из функции, объявленной
с атрибутом [[noreturn]]...374
12.5. MSC54-CPP. Обработчик сигнала должен быть обычной функцией........375

Приложение А. Литература..380

Приложение В. Определения..388

Приложение В. Связанные наставления...395

Приложение D. Оценки риска...397

От издательства

Отзывы и пожелания
Мы всегда рады отзывам наших читателей. Расскажите нам, что вы думаете
об этой книге – что понравилось или, может быть, не понравилось. Отзывы
важны для нас, чтобы выпускать книги, которые будут для вас максимально
полезны.

Вы можете написать отзыв на нашем сайте www.dmkpress.com, зайдя на
страницу книги и оставив комментарий в разделе «Отзывы и рецензии».
Также можно послать письмо главному редактору по адресу dmkpress@gmail.
com; при этом укажите название книги в теме письма.

Если вы являетесь экспертом в какой-либо области и заинтересованы в на-
писании новой книги, заполните форму на нашем сайте по адресу http://
dmkpress.com/authors/publish_book/ или напишите в издательство по адресу
dmkpress@gmail.com.

Список опечаток
Хотя мы приняли все возможные меры для того, чтобы обеспечить высо-
кое качество наших текстов, ошибки все равно случаются. Если вы найдете
ошибку в одной из наших книг, мы будем очень благодарны, если вы сооб-
щите о ней главному редактору по адресу dmkpress@gmail.com. Сделав это,
вы избавите других читателей от недопонимания и поможете нам улучшить
последующие издания этой книги.

Нарушение авторских прав
Пиратство в интернете по-прежнему остается насущной проблемой. Издатель-
ство «ДМК Пресс» очень серьезно относится к вопросам защиты авторских прав
и лицензирования. Если вы столкнетесь в интернете с незаконной публикацией
какой-либо из наших книг, пожалуйста, пришлите нам ссылку на интернет-ре-
сурс, чтобы мы могли применить санкции.

Ссылку на подозрительные материалы можно прислать по адресу элект
ронной почты dmkpress@gmail.com.

Мы высоко ценим любую помощь по защите наших авторов, благодаря
которой мы можем предоставлять вам качественные материалы.

http://www.dmkpress.com
mailto:dmkpress@gmail.com
mailto:dmkpress@gmail.com
http://dmkpress.com/authors/publish_book/
http://dmkpress.com/authors/publish_book/
mailto:dmkpress@gmail.com
mailto:dmkpress@gmail.com
mailto:dmkpress@gmail.com

Глава 1
Введение

В этом стандарте приведены правила безопасного кодирования на языке
программирования C++. Их цель – помочь в разработке безопасных и на-
дежных систем, в частности путем устранения неопределенного поведения,
которое может привести к появлению уязвимостей, допускающих эксплуата-
цию. Следование определенным в этом стандарте правилам кодирования –
необходимое (но недостаточное) условие безопасности и надежности систем,
написанных на языке C++. Дополнительно необходим, например, безопас
ный дизайн. К особо ответственным системам обычно предъявляются более
строгие требования, чем описаны в этом стандарте, например чтобы вся
память выделялась только статически. Однако применение этого стандарта
позволит создавать высококачественные системы – надежные, безотказные
и устойчивые к атакам.

Каждое правило содержит заголовок, описание, примеры не соответству­
ющего наставлению кода и соответствующее наставлению решение, а также
другую информацию, описанную в разделе «Как устроен этот стандарт коди-
рования». Заголовок представляет собой краткое, но иногда неточное опи-
сание правила. В описании приводятся нормативные требования, составля-
ющие правило. В не соответствующих наставлению примерах приведен код,
нарушающий правило. В соответствующем наставлению решении показан
эквивалентный код, не нарушающий ни это, ни другие правила.

Хорошо документированный и подлежащий обязательному исполнению
стандарт – важный элемент кодирования на языке C++. Стандарты кодиро-
вания побуждают программистов следовать единому набору правил, опреде-
ленных требованиями проекта и организации, а не личными пристрастиями
программиста. Будучи сформулированы, эти стандарты могут использовать-
ся в качестве метрик для оценки качества исходного кода (с помощью ручных
или автоматических процессов).

На вики-сайте стандарта кодирования SEI CERT C++ выкладываются об-
новления стандарта после выхода очередной версии. Если вы хотите принять
участие в создании этих правил, заведите учетную запись на вики-сайте и за-
просите права соавтора, отправив запрос по адресу info@sei.cmu.edu.

mailto:info@sei.cmu.edu

12   Введение

В информационный бюллетень по безопасному кодированию (Secure
Coding eNewsletter) включены новости инициативного проекта CERT по
безопасному кодированию, а также краткая информация о последних обнов-
лениях стандартных правил. Если вы хотите получать обновления напрямую,
подпишитесь на этот бюллетень на нашем сайте или отправьте запрос по
адресу info@sei.cmu.edu.

1.1. Область применимости
Стандарт кодирования CERT C++ разработан специально для версий языка
C++, описанных в следующих документах:

�� ISO/IEC 14882-2014, Programming Languages–C++, Fourth Edition, 2014
[ISO/IEC 14882-2014]

Хотя рекомендации в рамках этого стандарта были подготовлены для вер-
сии C++14, они применимы и к более ранним версиям, включая C++11. Там,
где это необходимо, отмечаются различия между версиями стандарта C++,
влияющие на применение рекомендаций.

В большинство наставлений включен пример не соответствующего настав-
лению кода, отвечающего стандарту C++14, так чтобы проблема, рассматри-
ваемая в наставлении, попадала в область применимости данного стандарта.
В большинство реализаций также включено соответствующее наставлению
решение, работающее на нескольких платформах. Расширениям языка и биб
лиотекам, опубликованным в виде технических отчетов или технических
спецификаций ISO/IEC, часто отдается предпочтение. Изредка для иллюстра-
ции описываются интересные поведения, зависящие от реализации.

1.1.1. Обоснование
Чтобы стандарт кодирования на языке C++ сохранял ценность как можно
дольше, он должен быть ориентирован на стандарт C++14 и последующие
технические отчеты.

Стандарт C++ документирует сложившуюся практику там, где это возмож-
но. То есть большинство средств должны быть протестированы в реализации
до включения в стандарт. У стандарта кодирования CERT C++ есть и допол-
нительная цель: установить набор наилучших практик, что иногда требу-
ет внедрения новых практик, возможно, малоизвестных или используемых
в тех случаях, когда существующие практики не годятся. Иначе говоря, стан-
дарт кодирования CERT C++ пытается играть роль застрельщика изменений,
а не просто документировать их.

Некоторые поставщики предлагают расширения C++, тогда как другие
реализовали только часть стандарта C++, прежде чем прекратить разработ-
ку. Поэтому невозможно обсуждать только C++98, C++03 или C++11. Уравне-

mailto:info%40sei.cmu.edu?subject=

 Область применимости   13

ние, описывающее поддержку со стороны поставщиков, слишком сложно,
чтобы провести черту и сказать, что некоторый компилятор поддерживает
в точности определенный стандарт. Какую бы точку разграничения ни вы-
брать, найдутся поставщики, которые находятся по разные стороны от нее
для разных частей языка. Чтобы узнать о поддержке всех возможностей,
пришлось бы протестировать комбинации каждого компилятора с каждым
языковым средством. Поэтому мы выбрали в качестве точки разграничения
самый поздний момент, желая, чтобы правила и рекомендации, определен-
ные в стандарте, оставались актуальными как можно дольше. Как следствие
поддерживаемые вариации и переносимость исходного кода оказываются
лучше, если программист использует только средства, определенные в стан-
дарте C++14. Это один из многих компромиссов между безопасностью и пе-
реносимостью, свойственных программированию на языке C++.

Ценность опережающей информации сначала возрастает со временем,
а потом начинает снижаться. Ценность информации, полученной в резуль-
тате анализа прошлого, начинает снижаться немедленно.

По всем этим причинам приоритетной целью настоящего стандарта явля-
ется поддержка разработки нового кода с использованием C++14. Чуть менее
важная цель – поддержка исправлений старого кода, написанного на C++11.

В этом стандарте уделено некоторое внимание поддержке старых компи-
ляторов, если это существенно и не противоречит другим, более приоритет-
ным целям. Наша задача – собрать не все отклонения от стандарта, а лишь
немного, но важные.

1.1.2. Какие вопросы не рассматриваются
Ряд вопросов в этом стандарте безопасного кодирования не рассматрива-
ются.

1.1.2.1. Стиль кодирования
Стиль кодирования – вещь субъективная, и практика показала, что прийти
к консенсусу по этому поводу невозможно. Поэтому стандарт безопасно
го кодирования CERT C++ не требует обязательного соблюдения какого-то
определенного стиля, а лишь рекомендует организациям принять настав-
ления по стилю кодирования и неукоснительно им следовать. Проще всего
добиться применения единого стиля – воспользоваться инструментом фор-
матирования кода. Во многих интерактивных средах разработки (IDE) такая
возможность имеется.

1.1.2.2. Спорные правила
Вообще говоря, в стандарты кодирования CERT обычно не включаются спор-
ные правила, для которых отсутствует единодушная поддержка.

14   Введение

1.2. Аудитория
Стандарт безопасного кодирования CERT C++ рассчитан в первую очередь на
разработчиков программ на C++, но может также использоваться заказчи-
ками программного обеспечения для определения требований к программ-
ному обеспечению. Стандарт представляет особый интерес для разработчи-
ков, которые стремятся создавать высококачественные системы, надежные
и устойчивые к атакам.

Хотя стандарт и не предназначен программистам на C, он может представ-
лять для них определенную ценность, потому что подавляющее большинство
проблем, свойственных программам на языке C, являются также проблемами
и в C++, хотя решения во многих случаях различны.

1.3. Практическое применение
Правила, изложенные в этом стандарте, нацелены на повышение безопас
ности программ путем повышения осведомленности разработчиков, а также
усовершенствования используемых ими практик и инструментов.

Этот стандарт можно использовать для разработки адаптированных стан-
дартов кодирования для проектов и организаций, обеспечивающих едино
образный подход к безопасности разработки программного обеспечения.
Он может быть дополнен правилами, относящимися к конкретной организа-
ции. Однако заявлять о согласованности с настоящим стандартом допустимо
только при соблюдении содержащихся в нем правил.

Этот стандарт можно также использовать для тестирования на согласован-
ность для выбора инструмента и выполнения проверки. Коль скоро стандарт
кодирования определен, можно разработать или модифицировать инстру-
менты и процессы, согласующиеся с ним.

Также этот стандарт можно использовать для разработки учебных курсов
и обучения профессионалов правильному применению стандартов кодиро-
вания. Институт программной инженерии (Software Engineering Institute –
SEI) предлагает несколько курсов по безопасному кодированию с выдачей
сертификатов – как очных, так и онлайновых. Материалы настоящего стан-
дарта, а также и дополнительные учебные и оценочные материалы могут
быть использованы для:

1)	� выявления претендентов на работу с конкретными навыками програм-
мирования;

2)	 демонстрации наличия хорошо обученного персонала;
3)	� предоставления руководящих материалов учебным и образователь-

ным учреждениям.

 Как устроен этот стандарт кодирования   15

1.4. Как устроен этот стандарт
кодирования
Настоящий стандарт кодирования состоит из 11 глав, которые содержат пра-
вила в основных областях, и четырех приложений. Приложение A содержит
список литературы, приложение B – определения терминов, приложение C –
связи между правилами стандарта и двух других наставлений на ту же тему:
MISRA C++ 2008: Guidelines for the Use of the C++ Language in Critical Systems
[MISRA 2008] и MITRE’s Common Weakness Enumeration (CWE) [MITRE 2010].
Наконец, в приложении D приводятся оценки риска для каждого правила,
приведенного в стандарте кодирования.

Большинство правил придерживаются единой структуры. У каждого пра-
вила имеется уникальный идентификатор, включенный в заголовок. В за-
головке и начальных абзацах правило определяется, обычно далее следуют
одна или несколько пар примеров не соответствующего наставлению кода
и соответствующего наставлению решения. Для каждого правила включе-
ны также оценка риска, связанные наставления и литература (там, где это
имеет смысл). Правило может также включать таблицу связанных с ним
уязвимостей.

1.4.1. Идентификаторы
Каждому правилу и рекомендации (см. раздел «Правила и рекомендации)
присваивается уникальный идентификатор. Идентификаторы состоят из
трех частей:

�� трехбуквенное мнемоническое обозначение раздела стандарта;
�� двузначное числовое значение в диапазоне от 00 до 99;
�� суффикс, описывающий язык или платформу:

− «-C» – стандарт кодирования SEI CERT C;
− «-CPP» – стандарт кодирования SEI CERT C++;
− «-J» – стандарт кодирования SEI CERT Oracle для Java;
− «-PL» – стандарт кодирования SEI CERT Perl.

Трехбуквенное мнемоническое обозначение используется, чтобы сгруп-
пировать схожие практики кодирования и указать, какой категории принад-
лежит практика.

Числовое значение играет роль уникального идентификатора внутри ка-
тегории. Числа от 00 до 49 зарезервированы для рекомендаций, а от 50 до
99 – для правил. (В стандарте кодирования SEI CERT C соглашения иные.)
В наставлениях из этого стандарта ссылки на правила и рекомендации часто
даются в виде идентификатора и заголовка.

16   Введение

Ниже приведено несколько примеров идентификаторов с пояснениями:
�� INT50-CPP. Не приводите к значению перечисления, выходящему за

пределы диапазона
−  Это идентификатор правила.
−  «INT» означает категорию Integer.
−  «50» – уникальный идентификатор.
−  «-CPP» означает язык C++.

�� EXP00-J. Не игнорируйте значения, возвращаемые методами
−  Это идентификатор рекомендации.
−  «EXP» означает категорию Expressions.
−  «00» – уникальный идентификатор.
−  «-J» означает язык Java.

�� FLP00-C. Уясните ограничения чисел с плавающей точкой
−  Это идентификатор рекомендации.
−  «FLP» означает категорию Floating Point.
−  «00» – уникальный идентификатор.
−  «-C» означает язык C.

1.4.2. Примеры не соответствующего наставлению
кода и соответствующих наставлению решений
Примеры не соответствующего наставлению кода иллюстрируют код, нару-
шающий обсуждаемое наставление. Важно отметить, что это всего лишь при-
меры, а исключение из программы всех вхождений примера еще не означает,
что анализируемый код теперь соответствует наставлению.

За примерами не соответствующего наставлению кода обычно следуют
соответствующие наставлению решения, которые показывают, как пример
не соответствующего кода можно переписать безопасно. Если явно не огово-
рено противное, то примеры не соответствующего наставлению кода долж-
ны содержать только нарушения обсуждаемого наставления. Соответствую-
щие наставлению решения должны быть согласованы со всеми правилами
безопасного кодирования, но иногда могут расходиться с рекомендациями.

1.4.3. Исключения
В любом правиле или рекомендации может быть определен небольшой на-
бор исключений, подробно описывающих обстоятельства, при которых не-
соблюдение наставления не влечет отсутствие гарантий безопасности или
надежности программы. Исключения приведены только для информации,
следовать им необязательно.

 Как устроен этот стандарт кодирования   17

1.4.4. Оценка риска
В каждом наставлении из стандарта кодирования CERT C++ имеется раздел
с оценкой риска, цель которого – попытаться дать разработчикам ПО пред-
ставление о потенциальных последствиях пренебрежения данным прави-
лом или рекомендацией (а также некоторое представление об ожидаемых
затратах на исправление). Команда разработчиков может использовать эту
информацию, чтобы упорядочить исправления нарушенных правил по при-
оритетности. Метрика предназначена главным образом для проектов по ис-
правлению старого кода. Вообще говоря, предполагается, что вновь разраба-
тываемый код будет соответствовать стандарту в целом и всем применимым
рекомендациям.

Каждому правилу и рекомендации присваивается приоритет. Приоритеты
назначаются на основе анализа видов, последствий и критичности отказов
(АВПКО) (англ. FMECA) [IEC 60812 2006]. Каждому правилу сопоставляются
три значения от 1 до 3: тяжесть последствий, вероятность и стоимость ис-
правления.

Тяжесть последствий – насколько серьезны последствия игнорирования
правила?
Значение Интерпретация Примеры уязвимостей
1 Низкая Атака типа «отказ в обслуживании», аварийное завер-

шение
2 Средняя Нарушение целостности данных, непреднамеренное

раскрытие информации
3 Высокая Выполнение произвольного кода

Вероятность – насколько вероятно, что дефект, возникший из-за игнори-
рования этого правила, может привести к допускающей эксплуатацию уяз-
вимости?
Значение Интерпретация
1 Маловероятно
2 Вероятно
3 Весьма вероятно

Стоимость исправления – затраты на приведение в соответствие с пра
вилом.
Значение Интерпретация Обнаружение Исправление
1 Высокая Ручное Ручное
2 Средняя Автоматическое Ручное
3 Низкая Автоматическое Автоматическое

Для каждого правила все три значения перемножаются. Произведение
является метрикой, которую можно использовать для упорядочения при-

18   Введение

менения правил по приоритету. Произведения изменяются в диапазоне от
1 до 27, и всего имеется 10 возможных значений: 1, 2, 3, 4, 6, 8, 9, 12, 18, 27.
Наставления с приоритетом от 1 до 4 называются правилами уровня 3, от 6
до 9 – уровня 2, а от 12 до 27 – уровня 1. Ниже приведены возможные ин-
терпретации приоритетов и уровней.

Приоритеты и уровни – насколько серьезны последствия игнорирования
правила?
Уровень Приоритеты Возможная интерпретация
L1 12, 18, 27 Высокая тяжесть последствий, весьма вероятно,

стоимость исправления низкая
L2 6, 8, 9 Средняя тяжесть последствий, вероятно, стоимость

исправления средняя
L3 1, 2, 3, 4 Низкая тяжесть последствий, маловероятно,

стоимость исправления высокая

В конкретных проектах исправление может начаться с реализации всех
правил определенного уровня, после чего можно переходить к низкоприо-
ритетным правилам, как показано на рисунке ниже.

Высокая тяжесть последствий,
весьма вероятно,

низкая стоимость исправления
дефектов

Средняя тяжесть последствий,
вероятно, средняя стоимость

исправления дефектов
Низкая тяжесть последствий,

маловероятно, высокая стоимость
исправления дефектов

L1: P12–P27

L2: P6–P9

L3: P1–P4

Рекомендации не обязательны и приведены только для информации

1.4.5. Автоматическое обнаружение
На вики-сайте (https://clck.ru/3MaLxS), а также в правилах и в рекомендациях
часто имеются разделы, в которых описывается автоматическое обнаружение.
Там приводится дополнительная информация об анализаторах, которые уме-
ют автоматически диагностировать нарушения наставлений по кодированию.
Автоматические виды анализа для языка C++ по большей части не являются
ни надежными, ни полными, поэтому включение инструмента в этот раздел

https://clck.ru/3MaLxS

 Как устроен этот стандарт кодирования   19

обычно означает, что инструмент может диагностировать некоторые наруше-
ния этого конкретного правила. Пакет Secure Coding Validation Suite (https://
clck.ru/3MaM2H) можно использовать для проверки способности анализаторов
диагностировать нарушения правил стандарта ISO/IEC TS 17961:2012, кото-
рый тесно связан с правилами из стандарта кодирования SEI CERT C.

Информация, приведенная в разделах, посвященных автоматическому
обнаружению, может быть:

�� предоставлена поставщиками;
�� получена CERT путем неформальной оценки анализатора;
�� получена CERT путем анализа документации поставщика.

Там, где возможно, мы стараемся ссылаться на точную версию инструмен-
та, для которой получены результаты. Поскольку эти инструменты постоянно
развиваются, информация довольно быстро устаревает.

1.4.6. Связанные уязвимости
В разделах по оценке рисков на вики-сайте приводятся также ссылки на по-
иск связанных уязвимостей на сайте CERT. Там, где возможно, примечания
об уязвимостях CERT помечены ключевым словом, соответствующим уни-
кальному идентификатору наставления по кодированию. Этот поиск дает ак-
туальный список реальных уязвимостей, причиной которых хотя бы отчасти
является нарушение данного наставления. Уязвимости помечаются таким
образом, только если группа анализа уязвимостей (https://clck.ru/3MaM9y)
в CERT/CC имеет возможность ознакомиться с исходным кодом и точно опре-
делить причину уязвимости. Поскольку многие уязвимости ссылаются на
программные системы с закрытым исходным кодом, провести такой допол-
нительный анализ не всегда возможно. Поэтому поле связанных уязвимо-
стей заполнено редко.

Разделы, посвященные связанным уязвимостям, включаются только для
некоторых правил, если информация считается релевантной и интересной.

1.4.7. Связанные наставления
Раздел связанных наставлений содержит ссылки на родственные стандарты,
технические спецификации и собрания наставления, например: Informa­
tion Technology–Programming Languages, Their Environments and System Software
Interfaces–C Secure Coding Rules [ISO/IEC TS 17961:2012]; Information Techno­
logy–Programming Languages–Guidance to Avoiding Vulnerabilities in Program­
ming Languages through Language Selection and Use [ISO/IEC TR 24772:2013];
MISRA C++ 2008: Guidelines for the Use of the C++ Language in Critical Systems
[MISRA 2008] и идентификаторы CWE в MITRE’s Common Weakness Enumera­
tion (CWE) [MITRE 2010].

https://clck.ru/3MaM2H
https://clck.ru/3MaM2H
https://clck.ru/3MaM9y

20   Введение

Вы можете построить уникальный URL-адрес для получения дополни-
тельной информации, добавив интересующий вас идентификатор в конец
фиксированной строки. Например, чтобы найти информацию о «CWE 192:
Integer Coercion Error», добавьте 192.html к http://cwe.mitre.org/data/defini-
tions/ и введите результирующий URL в адресную строку браузера: http://cwe.
mitre.org/data/definitions/192.html.

Другие технические спецификации, технические отчеты и наставления
доступны на коммерческой основе.

1.4.8. Литература
В большинстве наставлений имеется небольшой раздел литературы, в ко-
тором перечислены документы и разделы в них, содержащие информацию,
относящуюся к данному наставлению.

1.5. Связь со стандартом кодирования
CERT C
В разделе [intro.scope] стандарта C++, параграф 2 [ISO/IEC 14882-2014], чи-
таем:

C++ – универсальный язык программирования, основанный на язы-
ке программирования C, описанном в документе ISO/IEC 9899:1999
Programming languages – C (который далее называется стандартом C).
В дополнение к средствам, предоставляемым C, язык C++ предоставля-
ет дополнительные типы данных, шаблоны, исключения, пространства
имен, перегрузку операторов, перегрузку имен функций, ссылки, опера-
торы управления свободной памятью и дополнительные библиотечные
средства.

Поскольку C++ основан на языке программирования C, между наставле-
ниями в данном стандарте и в стандарте кодирования SEI CERT C имеется
значительное перекрытие. Чтобы уменьшить объем повторений, в этом стан-
дарте внимание уделено тем частям языка программирования C++, которые
не полностью покрываются стандартом кодирования CERT C. Из-за повы-
шенного внимания к типам в C++ некоторые правила C дополнены в стандар-
те безопасного кодирования CERT C++. Если явно не оговорено противное,
содержимое стандарта кодирования CERT C равным образом применимо
к коду, написанному на C++. То содержимое стандарта кодирования CERT C,
которое применимо к стандарту кодирования CERT C++, описано в соответ-
ствующих главах стандарта C++.

http://cwe.mitre.org/data/definitions/
http://cwe.mitre.org/data/definitions/
http://cwe.mitre.org/data/definitions/192.html
http://cwe.mitre.org/data/definitions/192.html

Конец ознакомительного фрагмента.
Приобрести книгу можно

в интернет-магазине
«Электронный универс»

e-Univers.ru

https://e-univers.ru/catalog/T0017022/

	От издательства
	Глава 1. Введение
	1.1. Область применимости
	1.2. Аудитория
	1.3. Практическое применение
	1.4. Как устроен этот стандарт кодирования
	1.5. Связь со стандартом кодирования CERT C
	1.6. Правила и рекомендации
	1.7. Выбор и проверка инструмента
	1.8. Тестирование на соответствие
	1.9. Процесс разработки
	1.10. Свойства системы
	1.11. Автоматически сгенерированный код
	1.12. Государственное регулирование
	1.13. Благодарности

	Глава 2. Объявления и инициализация (DCL)
	2.1. DCL50-CPP. Не определяйте вариадические функции в стиле C
	2.2. DCL51-CPP. Не объявляйте и не определяйте зарезервированный идентификатор
	2.3. DCL52-CPP. Никогда не употребляйте для ссылочного типа квалификаторы const и volatile
	2.4. DCL53-CPP. Не пишите синтаксически неоднозначных объявлений
	2.5. DCL54-CPP. Перегружайте функции выделения и освобождения памяти� одновременно в одной и той же области видимости
	2.6. DCL55-CPP�. Избегайте утечки информации при передаче объекта класса через границу доверия
	2.7. DCL56-CPP. Избегайте циклов при инициализации статических объектов
	2.8. DCL57-CPP. Не позволяйте исключениям выходить за пределы деструкторов или функций освобождения памяти
	2.9. DCL58-CPP. Не изменяйте стандартные пространства имен
	2.10. DCL59-CPP. Не определяйте безымянное пространство имен в заголовочном файле
	2.11. DCL60-CPP. Соблюдайте правило одного определения

	Глава 3. Выражения (EXP)
	3.1. EXP50-CPP. Не допускайте зависимости от порядка вычисления для получения побочных эффектов
	3.2. EXP51-CPP. Не удаляйте массив по указателю на некорректный тип
	3.3. EXP52-CPP. Не полагайтесь на побочные эффекты в невычисляемых операндах
	3.4. EXP53-CPP. Не читайте неинициализированную память
	3.5. EXP54-CPP. Не обращайтесь к объекту за пределами времени его жизни
	3.6. EXP55-CPP. Не обращайтесь
к cv-квалифицированному объекту через cv-неквалифицированный тип
	3.7. EXP56-CPP. Не вызывайте функцию с несовпадающей языковой компоновкой
	3.8. EXP57-CPP. Не приводите и не удаляйте указатели на неполные классы
	3.9. EXP58-CPP. Передавайте va_start объект правильного типа
	3.10. EXP59-CPP. Используйте offsetof() только с допустимыми типами и членами
	3.11. EXP60-CPP. Не передавайте объект типа с нестандартным размещением в памяти через границы выполнения
	3.12. EXP61-CPP. Лямбда-объект не должен жить дольше, чем объекты, на которые ведут захваченные им ссылки
	3.13. EXP62-CPP. Не обращайтесь к битам представления объекта, которые не являются частью представления значения объекта
	3.14. EXP63-CPP. Не полагайтесь на значение перемещенного объекта

	Глава 4. Целые (EXP)
	4.1. INT50-CPP. Не приводите к значению перечисления, выходящему за пределы диапазона

	Глава 5. Контейнеры (CTR)
	5.1. CTR50-CPP. Следите за тем, чтобы индексы и итераторы контейнеров не выходили за пределы допустимого диапазона
	5.2. CTR51-CPP. Используйте действительные ссылки, указатели и итераторы для ссылки на элементы контейнера
	5.3. CTR52-CPP. Следите за тем, чтобы в библиотечных функциях не было переполнения
	5.4. CTR53-CPP. Используйте корректные итераторные диапазоны
	5.5. CTR54-CPP. Не вычитайте итераторы, ссылающиеся на разные контейнеры
	5.6. CTR55-CPP. Не используйте аддитивный оператор для итератора, если в результате возможно переполнение
	5.7. CTR56-CPP. Не пользуйтесь арифметикой указателей для полиморфных объектов
	5.8. CTR57-CPP. Предоставляйте правильный предикат упорядочения
	5.9. CTR58-CPP. Предикатные объекты-функции не должны быть изменяемыми

	Глава 6. Символы и строки (STR)
	6.1. STR50-CPP. Следите за тем, чтобы в строке было достаточно места для символьных данных и завершающего нулевого символа
	6.2. STR51-CPP. Не пытайтесь создать std::string из нулевого указателя
	6.3. STR52-CPP. Используйте действительные ссылки, указатели и итераторы для ссылки на элементы basic_string
	6.4. STR53-CPP. Проверяйте диапазон при доступе к элементам

	Глава 7. Управление памятью (MEM)
	7.1. MEM50-CPP. Не обращайтесь к освобожденной памяти
	7.2. MEM51-CPP. Правильно освобождайте динамически выделенные ресурсы
	7.3. MEM52-CPP. Обнаруживайте и обрабатывайте ошибки выделения памяти
	7.4. MEM53-CPP. Явно конструируйте и уничтожайте объекты при ручном управлении временем жизни объекта
	7.5. MEM54-CPP. Передавайте оператору new с размещением указатели на правильно выровненную память достаточного размера
	7.6. MEM55-CPP. Соблюдайте требования к замене механизма управления динамической памятью
	7.7. MEM56-CPP. Не сохраняйте уже имеющий владельца указатель в несвязанном умном указателе
	7.8. MEM57-CPP. Не используйте оператор new по умолчанию для сверхвыровненных типов

	Глава 8. Ввод-вывод (FIO)
	8.1. FIO50-CPP. Не чередуйте ввод и вывод в файловый поток без промежуточного позиционирования
	8.2. FIO51-CPP. Закрывайте файлы, когда в них отпала необходимость

	Глава 9. Исключения и обработка ошибок (ERR)
	9.1. ERR50-CPP. Не завершайте программу внезапно
	9.2. ERR51-CPP. Обрабатывайте все исключения
	9.3. ERR52-CPP. Не используйте setjmp() или longjmp()
	9.4. ERR53-CPP. Не ссылайтесь на базовые классы или на данные-члены класса в обработчике функционального блока try конструктора или деструктора
	9.5. ERR54-CPP. Обработчики исключений должны быть упорядочены по типу параметра от наиболее производного к наименее производному
	9.6. ERR55-CPP. Обращайте внимание на спецификации исключений
	9.7. ERR56-CPP. Гарантируйте безопасность относительно исключений
	9.8. ERR57-CPP. Не допускайте утечки ресурсов при обработке исключений
	9.9. ERR58-CPP. Обрабатывайте все исключения, возбужденные до начала выполнения main()
	9.10. ERR59-CPP. Не возбуждайте исключения, пересекающие границы выполнения
	9.11. ERR60-CPP. Объекты исключений должны иметь копирующий конструктор, не возбуждающий исключений
	9.12. ERR61-CPP. Перехватывайте исключения по ссылке на l-значение
	9.13. ERR62-CPP. Обнаруживайте ошибки преобразования строки в число

	Глава 10. Объектно ориентированное программирование (OOP)
	10.1. OOP50-CPP. Не вызывайте виртуальные функции из конструкторов и деструкторов
	10.2. OOP51-CPP. Не срезайте производные объекты
	10.3. OOP52-CPP. Не удаляйте полиморфный объект без виртуального деструктора
	10.4. OOP53-CPP. Записывайте инициализаторы членов в конструкторе в каноническом порядке
	10.5. OOP54-CPP. Корректно обрабатывайте присваивание себе
	10.6. OOP55-CPP. Не используйте операторы указателя на член для доступа к несуществующим членам
	10.7. OOP56-CPP. Соблюдайте требования к подмененному обработчику
	10.8. OOP57-CPP. Предпочитайте специальные функции-члены и перегруженные операторы функциям из стандартной библиотеки C
	10.9. OOP58-CPP. Операции копирования не должны изменять исходный объект

	Глава 11. Конкурентность (CON)
	11.1. CON50-CPP. Не уничтожайте захваченный мьютекс
	11.2. CON51-CPP. Освобождайте захваченные блокировки при возникновении исключений
	11.3. CON52-CPP. Предотвращайте гонки за данные при доступе к битовым полям из нескольких потоков
	11.4. CON53-CPP. Предотвращайте взаимоблокировку, захватывая блокировки в предопределенном порядке
	11.5. CON54-CPP. Обертывайте циклом функции, которые могут неожиданно проснуться
	11.6. CON55-CPP. Помните о потокобезопас­но­сти и живучести, когда используете условные переменные
	11.7. CON56-CPP. Не используйте пробный захват нерекурсивного мьютекса, уже захваченного вызывающим потоком

	Глава 12. Разное (MSC)
	12.1. MSC50-CPP. Не используйте std::rand() для генерирования псевдослучайных чисел
	12.2. MSC51-CPP. Правильно инициализируйте свой генератор случайных чисел
	12.3. MSC52-CPP. Функции, возвращающие значение, должны возвращать его на всех путях выполнения
	12.4. MSC53-CPP. Не возвращайте управление из функции, объявленной с атрибутом [[noreturn]]
	12.5. MSC54-CPP. Обработчик сигнала должен быть обычной функцией

	Приложение A. Литература
	Приложение B. Определения
	Приложение C. Связанные наставления
	Приложение D. Оценки риска

