Предисловие

Пособие составлено в соответствии с требованиями Федерального государственного образовательного стандарта и программы по алгебре для 9 класса общеобразовательной школы. В сборник включены задачи по всем разделам алгебры, изучаемым в 9 классе средней школы. Содержит более 500 задач трех уровней сложности. В уровень А включены простые задачи, предназначенные для отработки элементарных навыков решения задач. В уровне В представлены базовые задачи, соответствующие обязательному уровню программы. В уровень С входят задачи повышенной сложности, олимпиадные и конкурсные задачи.

Как правило, представлены парные задачи, позволяющие отрабатывать пройденный материал в школе и закреплять его дома. В конце пособия приведены ответы, к наиболее сложным задачам даны и методические указания.

Все задачи данного сборника сгруппированы по темам:

- І. Квадратичная функция.
 - 1. Функции и их свойства.
 - 2. Квадратный трехчлен.
 - 3. Квадратичная функция и ее график.
 - 4. Степенная функция. Корень n-й степени.
- II. Уравнения и неравенства с одной переменной.
 - 5. Уравнения с одной переменной.
 - 6. Неравенства с одной переменной.
- III. Уравнения и неравенства с двумя переменными.
 - 7. Уравнения с двумя переменными и их системы.
 - 8. Неравенства с двумя переменными и их системы.
- IV. Арифметическая и геометрическая прогрессии.
 - 9. Арифметическая прогрессия.
 - 10. Геометрическая прогрессия.
- V. Элементы комбинаторики и теории вероятностей.
 - 11. Элементы комбинаторики.
 - 12. Начальные сведения из теории вероятностей.

Задачник предназначен для учеников и учителей общеобразовательных и профильных школ. Наличие в пособии задач разного уровня сложности позволяет использовать его для классной и домашней работы, проведения самостоятельных, контрольных и зачетных работ, подготовки к олимпиадам и ОГЭ. Сборник задач апробирован в общеобразовательных классах и в классах с углубленным изучением математики.

І. КВАДРАТИЧНАЯ ФУНКЦИЯ

1. Функции и их свойства

Уровень А

2. а) Даны функции $f(x) = \frac{3}{x} - 4x$ и h(x) = 2x - 5. Сравните:

2) 3:

5. Найдите значение x, при котором h(x) = 0:

2) $f(\frac{1}{2})$ и h(4);

2) y(2) $\bowtie z(-\frac{1}{2});$

3. а) Найдите значение х, при котором функция, заданная формулой

4. Определите, существует ли значение x, при котором значение функ-

б) Найдите значение x, при котором функция, заданная формулой

б) Даны функции $y(x) = 2x - \frac{6}{x}$ и z(x) = 4x - 3. Сравните:

 $f(x) = x^2 + 3x$:

д) $f(x) = \frac{x}{x-1}$;

e) $f(x) = \frac{x+1}{x+2}$.

3) f(-2) и h(1).

3) 8.

3) 0.

6) $g(x) = \frac{5}{2+x}$.

B) $h(x) = \frac{x+2}{5}$;

 $f(x) = \frac{4-2x}{x+1}$.

3) y(3) и z(2).

1. Найдите f(-1), f(0) и f(2), если:

f(x) = 5 - 3x, принимает значение:

 $f(x) = \frac{1}{2}x + 3$, принимает значение:

a) h(x) = -3(x+1)(x-2);

6) h(x) = 2(x-3)(x-5);

a) f(x) = 2x + 3:

б) f(x) = 2 - 3x:

B) $f(x) = x^2 - 4$:

1) f(1) и h(1);

1) y(-1) и z(0);

1) 2:

1) -1;

ции равно 2; 1; 0.

a) $g(x) = \frac{3}{r+1}$;

	20 · I			
3. а) Из множества чисел $\{-3; -1; 0; 2; 3; 7\}$ выпишите числа: 1) входящие в область определения функции $f(x) = \sqrt{2x-3};$				
2) не входящие в область определе	ения функции $g(x) = \sqrt{2-3x}$.			
б) Из множества чисел $\{-3; -2; -1; 0; 1; 2; 3\}$ выпишите числа 1) входящие в область определения функции $f(x) = \sqrt{3x+4};$				
2) не входящие в область определе	ения функции $g(x) = \sqrt{-4x - 3}$.			
7. Постройте график функции, заданной формулой:				
a) $y = 2x - 4$;	$\mathbf{B})\;y=\frac{2}{x};$			
6) $y = 6 - 2x$;	$\Gamma) y = -\frac{3}{x}.$			

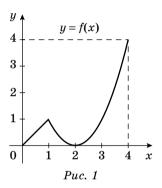
8. Найдите область определения функции:

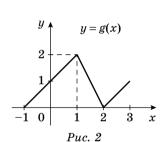
a)
$$y = 3x - 6$$
;

д)
$$y = \frac{2x+3}{2-x}$$
;

б)
$$y = 1 - 2x$$
;

e)
$$y = \frac{7x+10}{x+1}$$
;


B)
$$y = 2x^2 + 3x - 1$$
;


ж)
$$y = \sqrt{x - 11}$$
;

$$y = -x^2 + 7x + 2$$

3)
$$y = \sqrt{10 - x}$$
.

- **9.** а) Найдите область определения и множество значений функции y = f(x), график которой изображен на рисунке 1. Чему равно f(1); f(2); f(4)?
- б) Найдите область определения и множество значений функции y = g(x), график которой изображен на рисунке 2. Чему равно g(1); g(2); g(4)?

10. Не выполняя построения, найдите точки пересечения графика функции с осями координат:

a)
$$f(x) = \frac{1}{2}x - 3$$
;

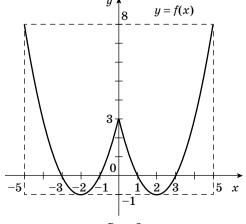
B)
$$f(x) = \frac{2-x}{x-1}$$
;

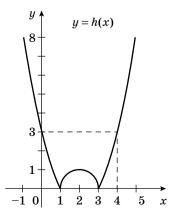
б)
$$f(x) = 3x + 15$$
;

$$\Gamma(x) = \frac{x+3}{3-2x}.$$

11. а) Постройте график функции f(x) = 2x - 4 на отрезке [-2; 3]. Пользуясь графиком, найдите:

- 1) множество значений функции;
- 2) нули функции;
- 3) промежутки, в которых функция принимает отрицательные значения:
- 4) промежутки, в которых функция принимает положительные значения;
 - 5) наибольшее и наименьшее значения функции;
 - 6) промежуток возрастания функции.
- б) Постройте график функции g(x) = 6 3x на отрезке [-1; 3]. Пользуясь графиком, найдите:
 - 1) множество значений функции;
 - 2) нули функции;


- 3) промежутки, в которых функция принимает отрицательные значения;
- 4) промежутки, в которых функция принимает положительные значения:
 - 5) наибольшее и наименьшее значения функции;
 - 6) промежуток убывания функции.
- **12.** а) На рисунке 3 изображен график функции y = f(x) на отрезке [-5; 5].


Пользуясь графиком, найдите:

- 1) область определения функции;
- 2) множество значений функции;
- 3) наименьшее и наибольшее значения функции;
- 4) нули функции;
- 5) промежутки, в которых функция принимает положительные значения;
- 6) промежутки, в которых функция принимает отрицательные значения;
 - 7) промежутки, на которых функция возрастает;
 - 8) промежутки, на которых функция убывает.
- б) На рисунке 4 изображен график функции y = h(x) на отрезке [-1; 4].

Пользуясь графиком, найдите:

- 1) область определения функции;
- 2) множество значений функции;
- 3) наименьшее и наибольшее значения функции;
- 4) нули функции;
- 5) промежутки, в которых функция принимает положительные значения;
- 6) промежутки, в которых функция принимает отрицательные значения;
 - 7) промежутки, на которых функция возрастает;
 - 8) промежутки, на которых функция убывает.

Puc. 4

13. а) Из следующего набора функций: y = 2x - 3; y = 3 - 7x; $y = \frac{1}{2}x + 3$; y = 3; y = -10x + 1; y = 0,01x + 1 выпишите:
 1) возрастающие функции;
 2) убывающие функции.
 6) Из следующего набора функций: y = 5x + 8; y = -2; y = 10 - 3x; y = 0,001x + 2; y = -100x - 3; y = -x + 1 выпишите:
 1) возрастающие функции;
 2) убывающие функции.

14. Установите соответствие между функциями и множествами, являющимися их областями определения.

a) A)
$$f(x) = 3 - 2x$$
 B) $g(x) = \sqrt{2x - 3}$ B) $h(x) = \sqrt{-2x - 3}$ 1) $\left[\frac{3}{2}; +\infty\right]$ 2) $(-\infty; +\infty)$ 3) $\left(-\infty; -\frac{3}{2}\right]$

6) A)
$$f(x) = 4x - 10$$
 B) $g(x) = \sqrt{4x + 10}$ B) $h(x) = \sqrt{10 - 4x}$

$$1) \left(-\infty; \frac{5}{2}\right]$$
 2) $\left[-\frac{5}{2}; +\infty\right)$ 3) $(-\infty; +\infty)$

15. Найдите нули функции (если они существуют):

a)
$$y = \frac{1}{2}x - 10;$$
 r) $y = (x - 1)(x - 5);$
6) $y = -0.4x + 8;$ g) $y = -15;$ e) $y = 12.$

16. Опишите свойства функций:

17. Задайте формулой какую-нибудь функцию, нулями которой являются числа:

a)
$$-5$$
; 6) 4; B) -3 ; 2; Γ) -1 ; 4.

18. Задайте формулой какую-нибудь функцию, областью определения которой является:

- а) множество всех чисел;
- б) множество всех чисел, кроме -1;
- в) множество всех чисел, кроме 3;
- Γ) множество [2; +∞);
- д) множество ($-\infty$; -3].

19. Найдите все значения x, при которых функция f(x):

a)
$$f(x) = 2x - 7;$$
 B) $f(x) = \frac{7}{x};$ 6) $f(x) = 5x + 9;$ $r)f(x) = -\frac{5}{x}$

- 1) принимает отрицательные значения;
- 2) принимает положительные значения.

- **20.** а) Дана функция f(x) = -3x + 1, где $-2 \le x \le 3$. Найдите область значений функции.
- б) Дана функция f(x) = 2x 3, где $-3 \le x \le 2$. Найдите область значений функции.
- **21.** а) Дана функция y = 4x 3. Найдите зависимость переменной x от величины y.
- б) Дана функция y = -3x + 2. Найдите зависимость переменной x от величины y.
- 22. Высота подъема h (м) тела, брошенного вертикально вверх с начальной скоростью v_0 (м/с), вычисляется по формуле $h=\frac{v_0^2}{2g}$ ($g=10~{\rm m/c}^2$). Определите, при какой скорости v_0 высота подъема h равна:

а) 20 м;

б) 80 м.

Уровень В

23. Найдите f(1) - f(-2), если:

a)
$$f(x) = \frac{3x - x^2}{x + 1}$$
;

B)
$$f(x) = \frac{x^2 - 1}{x^2 + 2}$$
;

6)
$$f(x) = \frac{2x + x^2}{x + 3}$$
;

$$\Gamma(x) = \frac{x^2 - 3}{x^2 + 4}.$$

24. Найдите область определения функции:

a)
$$f(x) = 1 + \frac{1}{4 - \frac{1}{x}}$$
;

$$f(x) = 5 + \frac{2}{2x - \frac{8}{x}};$$

6)
$$f(x) = 2 + \frac{1}{5 - \frac{2}{x}}$$
;

д)
$$f(x) = \frac{\sqrt{x-5}}{x^2-14x+48}$$
;

B)
$$f(x) = 4 + \frac{3}{x - \frac{1}{x}};$$

e)
$$f(x) = \frac{\sqrt{1-x}}{x^2 + 5x + 6}$$
.

25. Найдите нули функций (если они есть):

a)
$$f(x) = \frac{3(x+5)(x-4)}{x^2-16}$$
;

B)
$$f(x) = \frac{x^2 - 2x + 1}{x^2 - 4x + 3}$$
;

6)
$$f(x) = \frac{3x^2(1-x)}{2x-4x^2}$$
;

$$\mathbf{r)} f(x) = \frac{x^2 - 4x + 4}{x^2 - x - 2}.$$

26. Укажите промежутки возрастания и убывания для следующих функций:

a)
$$f(x) = \frac{4x-3}{x-1}$$
;

B)
$$f(x) = 2|x| - 1$$
;

$$6) f(x) = \frac{2x+3}{x+1};$$

$$\Gamma) f(x) = 3 - 2|x|.$$

27. Найдите множество значений функции:

a)
$$f(x) = \frac{5}{6x - 2} - 3$$
;

6)
$$f(x) = \frac{7}{2x-5} + 2$$
;

в)
$$f(x) = 3 - \frac{x}{2-x}$$
; д) $f(x) = \sqrt{4-x^2}$;

r)
$$f(x) = 1 - \frac{x}{5 - x}$$
; e) $f(x) = \sqrt{9 - x^2}$.

28. Найдите наибольшее значение функции:

a)
$$f(x) = 5 - |x - 1|$$
; B) $f(x) = 6 - \sqrt{x - 4}$;

6)
$$f(x) = 4 - |x + 3|$$
; $f(x) = 3 - \sqrt{x + 1}$.

29. Найдите наименьшее значение функции:

a)
$$f(x) = |x - 2| - 3;$$
 B) $f(x) = 3\sqrt{x - 1} + 5;$

6)
$$f(x) = 2|x+1| + 4$$
; $f(x) = 10\sqrt{x+2} + 15$.

30. Найдите значение x, при которых функция:

a)
$$f(x) = |x - 1| - 2;$$
 B) $f(x) = \sqrt{x - 1} - 1;$

6)
$$f(x) = -|x+1| + 3;$$
 $f(x) = 2 - \sqrt{x+1}$

- 1) принимает положительные значения;
- 2) принимает отрицательные значения.

31. Найдите области определения и значений функции:

a)
$$y = \sqrt{2x - 4} + 3;$$
 6) $y = \sqrt{6 - 3x} - 4.$

- **32.** а) Дана функция $f(x) = x^2 + 3$, где $-2 \le x \le 3$. Найдите область значений функции.
- б) Дана функция $f(x) = 1 x^2$, где $-3 \le x \le 2$. Найдите область значений функции.
- 33. а) Дана функция $y = \frac{x+3}{1-x}$. Найдите зависимость переменной x от величины y.
 - б) Дана функция $y = \frac{3-x}{x+1}$. Найдите зависимость x от величины y.
- **34.** а) Поезд сначала ехал 2 ч со скоростью 50 км/ч, а затем еще 3 ч со скоростью 70 км/ч. Задайте зависимость пройденного пути S (км) от времени движения t (ч) (где $0 \le t \le 5$).
- б) Поезд сначала ехал 3 ч со скоростью 50 км/ч, а затем еще 2 ч со скоростью 70 км/ч. Задайте зависимость пройденного пути S (км) от времени движения t (ч) (где $0 \le t \le 5$).
- **35.** Найдите площадь треугольника, ограниченного осями координат и прямой:

a)
$$y = 3x - 6$$
; 6) $y = 4 - 2x$.

36. Найдите площадь треугольника, ограниченного осью абсцисс и графиком функции:

37. Найдите f(f(x)), если:

a)
$$f(x) = x + 2;$$
 B) $f(x) = 3 - 2x;$

6)
$$f(x) = 3 - x$$
; $f(x) = 3x - 2$.

38. Найдите f(x), если:

a)
$$f(x+3) = 2x-1$$
; B) $f(2x-1) = 3x+2$;

6)
$$f(2-x) = 2-3x$$
; $f(2-3x) = 4-5x$.

39. Постройте график функции:

a)
$$y = \frac{3x^2 + 2x}{x}$$
;

3)
$$y = \frac{4-x^2}{x-2}$$
;

$$\text{ 6) } y = \frac{3x - 2x^2}{x};$$

и)
$$y = \frac{x^2 - 2x + 1}{x - 1}$$
;

$$\mathbf{B}) \ y = \frac{x^3}{|x|};$$

$$\text{K) } y = \frac{-x^2 + 4x - 4}{x - 2};$$

$$\Gamma) y = -\frac{x^3}{|x|};$$

л)
$$y = \frac{x-3}{3x-x^2}$$
;

д)
$$y = 2x + |x| + 1$$
;

M)
$$y = \frac{x+2}{x^2+2x}$$
;

e)
$$y = -2x + |x| - 1$$
;

H)
$$y = \frac{x^2 - 6x + 9}{|x - 3|}$$
;

ж)
$$y = \frac{x^2 - 9}{x + 3}$$
;

o)
$$y = \frac{4x - x^2 - 4}{|x - 2|}$$
.

Уровень С

40. а) Найдите значение выражения $\frac{f(-6)+f(-1)}{f(3)}$, если

$$f(x) = egin{cases} rac{6}{x}, \, ext{если} \, \, x \leq -2, \ 5x - 7, \, ext{если} \, -2 < x \leq 0, \ 7 - x^2, \, ext{если} \, \, x > 0; \end{cases}$$

б) найдите значение выражения $\frac{g(-2)+g(0)}{g(5)-0,6}$, если

$$g(x) = egin{cases} -x^2-1, \ \mathrm{ec}$$
ли $x < -1, \ -rac{4}{x^2+1}, \ \mathrm{ec}$ ли $-1 \le x < 3, \ 2x-6, 4, \ \mathrm{ec}$ ли $x \ge 3; \end{cases}$

- в) найдите значение $h(a^2-1)$ при $a \in (-1; 1)$, если h(x) = x + |x|;
- г) найдите значение $s(a^2-4a+3)$ при $a\in (1;3),$ если $s(x)=\frac{|x|}{x}$.

41. Найдите количество целых чисел, входящих в область определения функции:

a)
$$f(x) = \sqrt{5 - |3 - x|};$$

B)
$$f(x) = \sqrt{\frac{1 - |x - 3|}{|x + 2| - 2}};$$

6)
$$f(x) = \sqrt{2 - |5 - x|};$$

$$f(x) = \sqrt{\frac{2 - |x - 5|}{|x + 1| - 3}}.$$

42. Найдите множество значений функции:

a)
$$y = \frac{x^2 + 2x - 2}{x + 3}$$
;

$$\text{ 6) } y = \frac{x^2 + x - 5}{x - 2}.$$

43. а) Найдите наибольшее и наименьшее значения функции $f(x) = \sqrt{x^2 - 6x + 9} - \sqrt{x^2 + 4x + 4}$ на отрезке [-3; 4];

б) найдите наибольшее и наименьшее значения функции $f(x) = \sqrt{4x^2 - 4x + 1} + 2\sqrt{x^2 + 10x + 25}$ на отрезке [-6; 1].

44. Постройте график функции:

a)
$$y = x + |x - 2|$$
;

e)
$$y = \frac{4-x^2}{x+2} + 3x - 1$$
;

6)
$$y = 2x - |x - 3|$$
;

$$\mathfrak{K})\,\frac{y+x-1}{x+2}=3;$$

B)
$$y = |x - 1| + |x + 2|$$
;

3)
$$\frac{2y-x-2}{y+x} = 1;$$

$$|y| = |x - 1| - |x + 2|$$
:

и)
$$y = \sqrt{x^2 - 2x + 1} + 2x$$
;

д)
$$y = \frac{x^2 - 9}{3x} + 2x + 1;$$

$$\text{K) } y = 3x - \sqrt{x^2 + 4x + 4}.$$

45. Найдите функцию y(x), если известно значение:

a)
$$u(6-x)=5+x$$
:

$$\Gamma) \ y(6-x) = 2 - |x+3|;$$

6)
$$y(6-x)=\frac{2x+1}{3x-2}$$
;

д)
$$y(6-x) = \frac{3|x-1|+2}{2x-1}$$
.

B)
$$y(6-x) = 2x^2 - 3x + 4$$
;

46. Найдите функцию y(x), если известно значение:

a)
$$y(2x-4)=3-2x$$
;

$$\Gamma) \ y(2x-4) = 4x - 2|x+1|;$$

6)
$$y(2x-4) = \frac{2x-1}{4x+2}$$
;

д)
$$y(2x-4) = \frac{2|x+1|+3}{4|x|-8}$$
.

B)
$$y(2x-4) = 4x^2 + 2x - 7$$
;

47. Найдите функцию y(x), если выполнено равенство:

a)
$$2y(x) + 3y(-x) = 4x^2 - 7x + 5$$
;

6)
$$3y(x) - 2y(-x) = -x^2 + 8x + 3$$
;

B)
$$2y(x-3) - 5y(3-x) = x^2 - 3x + 1$$
;

$$y(x-5)-2y(5-x)=-x^2+2x-1$$

д)
$$2y(x) - 3y\left(\frac{1}{x}\right) = 5x^2 - \frac{3}{x^2};$$

e)
$$y(x) + 2y(\frac{1}{x}) = -x + \frac{7}{x} + 1$$
.

48. Найдите f(f(x)), если:

a)
$$f(x) = -3x + 5$$
;

$$\Gamma(x) = \frac{2x-1}{x+1}$$
;

б)
$$f(x) = 2x - 1$$
;

$$д) f(x) = x^2 + x;$$

B)
$$f(x) = \frac{x+1}{x-1}$$
;

e)
$$f(x) = 3x - x^2$$
.

49. Найдите $y_1 = f(h(x))$ и $y_2 = h(f(x))$, если:

a)
$$f(x) = 3x - 2$$
, $h(x) = 1 - 2x$;

$$\Gamma(x) = x - x^2, \ h(x) = x^2 + 2x;$$

6)
$$f(x) = 2x + 1$$
, $h(x) = 2 - 3x$;

д)
$$f(x) = \frac{x-1}{x+1}$$
, $h(x) = x^2 + x$;

B)
$$f(x) = x^2 + x$$
, $h(x) = 2x - x^2$;

e)
$$f(x) = 2x - x^2$$
, $h(x) = \frac{x+1}{1-x}$.

50. Постройте график функции g(x) = f(|x|) и опишите свойства функции y = g(x), если:

a)
$$f(x) = \begin{cases} 1-x, \text{ если } x \in [0;3], \\ x-5, \text{ если } x \in (3;4], \\ 2x-9, \text{ если } x \in (4;+\infty); \end{cases}$$
б) $f(x) = \begin{cases} x+1, \text{ если } x \in [0;2], \\ -2x+7, \text{ если } x \in (2;5), \\ x-8, \text{ если } x \in [5;+\infty). \end{cases}$

2. Квадратный трехчлен

Уровень А

51. Из каждого набора многочленов выпишите квадратные трехчлены:

a)
$$x^2 - 4x^4 + 3$$
; $x - x^2 + 6$; $-x^2 + 2x$; $x^2 - 5$; $x - x^3$; $x^2 + 1 - x^2$;

a)
$$x^2 - 4x^4 + 3$$
; $x - x^2 + 6$; $-x^2 + 2x$; $x^2 - 5$; $x - x^3$; $x^2 + 1 - x^2$;
6) $x^2 - 6x + 9$; $x^2 - 3x - x^2$; $x^2 - 3x^5 + x$; $2x + x^2$; $x^2 + 9$; $3x + 1 + x^2$.

- 52. а) Какие из чисел -3; -1; 1; 2; 3 являются корнями многочлена $x^2 - 4x + 3?$
- б) Какие из чисел -5; -1; 1; 3; 5 являются корнями многочлена $x^2 - 6x + 5$?
- в) Какие из чисел -2; $-\frac{1}{2}$; 1; $\frac{1}{2}$; 2 являются корнями многочлена $2x^2 - 5x + 2$?
- г) Какие из чисел -3; -1; $-\frac{1}{3}$; $\frac{1}{3}$; 3 являются корнями многочлена $3x^2 + 10x + 3$?

53. Установите соответствие между многочленом и его корнями.

a) A)
$$x - x^2$$

B)
$$x^2 - 6x + 8$$
 B) $x^2 - 9$

B)
$$x^2 - 9$$

6) A)
$$x^2 + 5x + 6$$
 B) $x^2 - 16$
1) 0: -2 2) -4: 4

Б)
$$x^2 - 16$$

2) -4 : 4

B)
$$4x + 2x^2$$

3) -2 : -3

54. Определите количество корней у квадратного трехчлена:

a)
$$2x^2 + 5x + 4$$
:

$$r) 3x^2 - 10x + 3$$
:

6)
$$3x^2 - 2x + 4$$
;

д)
$$2x^2 + 8x + 8$$
;

B)
$$2x^2 + 5x + 2$$
;

e)
$$3x^2 - 6x + 3$$
.

55. Найдите корни квадратного трехчлена:

a)
$$2x^2 - 7x + 3$$
:

$$\Gamma$$
) $x^2 - 3x - 4$;

6)
$$3x^2 - 7x + 2$$
;

д)
$$4x^2 - 36$$
;

B)
$$x^2 - 2x - 3$$
;

12

e)
$$5x^2 - 80$$
.

56. Из каждого набора квадратных трехчленов выпишите те, которые можно разложить на множители:

a)
$$2x^2 + 7x + 10$$
; $x^2 - 7x + 12$; $x^2 + 4$; $3x^2 + 12x + 12$; $2x^2 - 2x - 12$; $x^2 + 2x - 2$:

6) $x^2 - 4x + 1$; $3x^2 - 5x + 4$; $x^2 + 8x + 12$; $2x^2 + 10$; $2x^2 + 8x + 8$; $3x^2 + 3x - 18$.

57. Установите соответствие между квадратными трехчленами и их разложениями на множители.

- A) $x^2 3x + 2$
- E) $x^2 + 3x + 2$
- B) $-x^2 + 3x 2$

- A) $x^2 4x + 3$ რ)
- 1) (x + 1)(x + 2) 2) (1 x)(x 2)
- 3) (x-1)(x-2)B) $x^2 + 4x + 3$

- 1) (3-x)(x-1)
- E) $-x^2 + 4x 3$ 2) (x-1)(x-3)
- 3) (x+1)(x+3)

58. Разложите на множители квадратный трехчлен:

a) $x^2 - 10x + 21$;

 $r) x^2 - x - 30$:

б) $x^2 - 9x + 18$:

 π) $2x^2 - 7x + 3$:

B) $x^2 + x - 12$:

e) $3x^2 - 7x + 2$.

59. Запишите разложение приведенного квадратного трехчлена на множители, если корни этого квадратного трехчлена равны:

а) 3 и 5;

 π) -3 и -2;

б) 2 и 4;

e) -5 и -1:

в) $\frac{1}{9}$ и 2;

ж) $-\frac{1}{2}$ и $\frac{1}{2}$;

 $_{\Gamma}$) $\frac{1}{2}$ и 3;

3) $-\frac{1}{5}$ $\times \frac{1}{2}$.

60. Какое выражение надо подставить вместо многоточия, чтобы получилось верное равенство?

- a) $x^2 5x + 6 = (x 3)(...)$:
- $(x^2 2x 15) = (x 5)(...);$
- 6) $x^2 7x + 12 = (x 4)(...)$:
- π) $2x^2 5x + 2 = (2x 1)(...);$
- B) $x^2 2x 8 = (x 4)(...)$:
- e) $3x^2 10x + 3 = (3x 1)(...)$

61. Сократите дробь:

a) $\frac{x^2 - 7x + 10}{x^2}$;

B) $\frac{x+1}{x^2-6x-7}$;

 $(5) \frac{x^2 - 9x + 18}{x - 6};$

 Γ) $\frac{x+2}{x^2-3x-10}$.

62. а) Найдите значение дроби $\frac{x^2 - 11x - 26}{9x + 18}$ при x = 9013.

б) Найдите значение дроби $\frac{x^2 - 8x - 33}{10x + 30}$ при x = 10 011.

63. Выделите квадрат двучлена из квадратного трехчлена:

a) $x^2 - 4x + 5$:

B) $x^2 + 8x - 1$:

 $(5) x^2 - 6x + 10$:

r) $x^2 + 10x - 3$.

64. а) Докажите, что квадратный трехчлен:

- 1) $x^2 12x + 37$ принимает только положительные значения;
- 2) $x^2 10x + 27$ принимает только положительные значения.
- б) Докажите, что квадратный трехчлен:
- 1) $-x^2 8x 20$ принимает только отрицательные значения;
- 2) $-x^2 14x 55$ принимает только отрицательные значения.

Уровень В

65. Найдите корни квадратного трехчлена:

a)
$$10x^2 - 7\sqrt{3}x + 3$$
:

B)
$$x^2 - (3 - 2\sqrt{3})x + 5 - 3\sqrt{3}$$
;

6)
$$6x^2 - 5\sqrt{5}x + 5$$
;

$$\Gamma$$
) $x^2 - (5 - 2\sqrt{5})x + 11 - 5\sqrt{5}$.

66. Определите, при каких значениях параметра a можно разложить на множители квадратный трехчлен:

a)
$$2x^2 + 7x - a$$
:

B)
$$ax^2 + 4x + 8$$
;

6)
$$3x^2 + 5x + 2a$$
;

$$r) ax^2 - 3x + 3$$
.

67. Сократите дробь:

a)
$$\frac{x^2 + 2x - 15}{4x - x^2 - 3}$$
;

B)
$$\frac{4x^2-7x-2}{11x-4x^2+3}$$
;

$$6) \frac{6 - x - x^2}{x^2 - 7x + 10};$$

$$\Gamma \frac{2x^2 + 3x - 2}{7x - 2x^2 - 3}.$$

68. Постройте график функции:

a)
$$y = \frac{2x^2 + 3x - 2}{x + 2}$$
;

B)
$$y = \frac{5x^2 + 4x - 1}{x + 1} - \frac{x^2 - 4}{x - 2}$$
;

$$\text{6) } y = \frac{2x^2 - 3x - 2}{x - 2};$$

$$\Gamma y = \frac{2x^2 + x - 3}{x - 1} - \frac{x^2 - 4}{x + 2}.$$

69. а) При каком значении x квадратный трехчлен $2x^2 - 4x - 5$ принимает наименьшее значение? Чему оно равно?

б) При каком значении x квадратный трехчлен $-3x^2 + 6x - 7$ принимает наибольшее значение? Чему оно равно?

70. Определите, при каком наименьшем значении параметра a можно сократить дробь:

a)
$$\frac{x^2 - 3x - 10}{x^2 - a}$$
;

$$6) \frac{x^2 + 2x - 48}{x^2 - a}.$$

71. Найдите все значения параметра a, при которых можно сократить дробь:

a)
$$\frac{x^2 + 3x - 28}{x^2 + ax + 16}$$
;

$$6) \frac{x^2 + 5x - 14}{x^2 + ax + 4}.$$

72. Запишите многочлен P(x) по степеням величины x-3:

a)
$$P(x) = 3x^2 - 7x - 1$$
:

$$6) P(x) = -2x^2 + 5x + 3$$

73. Запишите многочлен P(x) по степеням величины 5-2x:

a)
$$P(x) = 4x^2 - 6x + 1$$
;

$$6) P(x) = -8x^2 + 2x - 7$$

74. Напишите квадратный трехчлен с целыми коэффициентами, который имеет корни:

a)
$$-\frac{1}{2}$$
 $\times \frac{2}{3}$;

б)
$$-\frac{2}{3}$$
 и $\frac{1}{4}$.

75. Квадратный трехчлен $3x^2 + 5x - 4$ имеет корни x_1 и x_2 . Напишите квадратный трехчлен с целыми коэффициентами, который имеет корни:

а)
$$2x_1$$
 и $2x_2$;

в)
$$x_1 + 1$$
 и $x_2 + 1$;

б)
$$-3x_1$$
 и $-3x_2$;

76. Найдите связь между переменными x и y, если выполнено равенство:

a)
$$2x^2 + 3xy - 20y^2 = 0;$$
 B) $\frac{10x^2 - 13xy + 3y^2}{2x^2 - 3y^2} = 4;$

77. Разложите на множители многочлен:

(a)
$$x = 3x + 6x$$
,
(b) $x^7 + 9x^6 + 20x^5$;
(c) $x^7 + 9x^6 + 20x^5$;
(d) $5x^2 - 2ax - 3a^2$;

B)
$$x^4 - 5x^2 + 4$$
; e) $7x^2 + 3ax - 10a^2$

78. Найдите наибольшее значение выражения A. При каких значени- $\mathbf{x} \mathbf{x} \mathbf{u} \mathbf{u}$ оно достигается?

a)
$$A = \frac{7}{(x-2)^2 + (y+3)^2 + 1}$$
;
 B) $A = \frac{10}{x^2 + y^2 + 4x - 6y + 14}$;

6)
$$A = \frac{5}{2(x-1)^2 + 3(y+2)^2 + 5}$$
; r) $A = \frac{8}{x^2 + y^2 - 2x - 10y + 30}$.

79. Постройте график функции:

- 80. а) Периметр прямоугольника равен 48 см. Найдите его площадь, если она наибольшая из всех возможных.
- б) Периметр прямоугольника равен 56 см. Найдите его площадь, если она наибольшая из всех возможных.
- 81. Упростите выражение:

a)
$$\left(\frac{2}{x-2} + \frac{3x-21}{x^2+x-6} + \frac{2x}{x+3}\right) \cdot \frac{x}{2x-5}$$
;

6)
$$\left(\frac{3}{x-4} + \frac{4x-6}{x^2-3x-4} + \frac{2x}{x+1}\right) \cdot \frac{x}{2x-3}$$
.

- **82.** a) При каких значениях параметра a трехчлен $3x^2 + (2a 1)x + (2a 1)x$ +12-6a имеет корни противоположных знаков?
- б) При каких значениях параметра a трехчлен $2x^2 (a-3)x + 12 + 4a$ имеет корни противоположных знаков?

Уровень С

83. Найдите наибольшее значение выражения А. При каких значениях x и y оно достигается?

a)
$$A = 6y - 4x - x^2 - y^2$$
;

6)
$$A = 10x - 2y - x^2 - y^2 + 3$$
;

B)
$$A = 4x + 5 - 3x^2 - y^2 - 2xy$$
;

B)
$$A = 4x + 5 - 3x^2 - y^2 - 2xy;$$

r) $A = 6 + 4y + 2xy - x^2 - 2y^2.$

- **84.** а) Найдите наибольшее значение выражения $A = 5x^2 + 4xy 5y^2$, если 2x - y = 1.
- б) Найдите наибольшее значение выражения $A = x^2 4xy + y^2$, если x - y = 3.

85. При каких значениях x выражение A принимает наименьшее значение?

a)
$$A = x^2(3x-2)^2 - 2x(3x-2) - 3$$
; 6) $A = x^2(2x-5)^2 - 6x(2x-5) - 5$.

- 86. а) Стороны прямоугольника равны 11 см и 7 см. Большую его сторону уменьшили на a см, меньшую увеличили на такое же число сантиметров. Найдите площадь полученного прямоугольника, если она наибольшая из всех возможных.
- б) Стороны прямоугольника равны $13 \, \mathrm{cm}$ и $9 \, \mathrm{cm}$. Большую его сторону уменьшили на $a \, \mathrm{cm}$, меньшую увеличили на такое же число сантиметров. Найдите площадь полученного прямоугольника, если она наибольшая из всех возможных.
- 87. Постройте график функции:

a)
$$y = \frac{x^2 - 5x + 6}{2 - x};$$
 $y = \frac{-x^3 + 3x^2 - 2x}{x^2 - 2x};$
6) $y = \frac{-x^2 + 6x - 8}{2 - x};$ $y = \frac{(x - 1)(x^2 - x - 6)}{x^2 + x - 2};$

B)
$$y = \frac{x^3 - x^2 - 2x}{2x - x^2}$$
; e) $y = \frac{(x+3)(x^2 - 3x + 2)}{x^2 + x - 6}$.

88. Разложите на множители выражение:

a)
$$x^2 - (2a + 1)x + a^2 + a - 2$$
; e) $x^2 - 2ax - 2x - 6a - 15$;

6)
$$x^2 - 2ax - 3a^2 + 4a - 1;$$
 $x(x + 1)(x + 2)(x + 3) - 15;$

B)
$$2a^2 - x^2 - ax - a + x$$
; 3) $(x+3)(x-2)(x+1)x + 8$; 1) $x^2 - 2a^2 - ax - x - a$; 21 $x + 4$; 3) $(x+3)(x-2)(x+1)x + 8$; 22 $x + 4$; 3) $x + 4$;

$$\pi$$
) $x^2 + 3ax + 4x - 6a - 12$; π) $4x^4 + 1$.

89. Сократите дробь:

16

a)
$$\frac{2x^2 + xy - 6y^2}{3y - 2x}$$
;
B) $\frac{10y^2 + 9y - 9}{6y^2 + 11y + 3}$;

6)
$$\frac{3y^2 + 2xy - 8x^2}{4x - 3y}$$
; r) $\frac{9y^2 - 6y - 8}{6y^2 - 5y - 4}$.

- **90.** а) Сократите дробь $\frac{x^2 + 3xy 4y^2}{x^2 9xy + 8y^2}$ и вычислите ее значение при $\frac{x}{y} = 2$.
- б) Сократите дробь $\frac{x^2+3xy+y^2}{2x^2-5xy+2x^2}$ и вычислите ее значение при $\frac{x}{y}=3.$
- **91.** Найдите значение выражения $\frac{x}{u}$, если:

a)
$$\frac{10x^2 - 13xy + 3y^2}{2x^2 - 3y^2} = 4;$$
 B) $\frac{7x - y}{6x + 5y} = \frac{6x + 5y}{7x - y}$ if $xy < 0;$

б)
$$\frac{9x^2 - 8xy - 3y^2}{2x^2 - 3y^2} = 2;$$
 Γ) $\frac{5x - 3y}{3x + 5y} = \frac{3x + 5y}{5x - 3y}$ и $xy < 0$.

92. Найдите значение выражения:

а)
$$16a^2 - 24ab + 9b^2 - 4a + 3b$$
, если $a = \frac{3}{4}b$;

б)
$$9a^2 + 30ab + 25b^2 + 3a + 5b$$
, если $a = -\frac{5}{3}b$;

в)
$$25a^2 - 40ab + 16b^2 + 5a - 4b$$
, если $a = \frac{4b-1}{5}$;

г)
$$9a^2 + 12ab + 4b^2 + 9a + 6b$$
, если $a = -\frac{2b+3}{3}$.

93. Упростите выражение:

a)
$$\left(\frac{4x}{x^2 - 3x + 2} + \frac{2}{x^2 - 1}\right)$$
: $\frac{2x + 4}{x^2 - x - 2} - \frac{x}{x - 1}$;

6)
$$\left(\frac{6x}{x^2-x-2}+\frac{9}{x^2-4}\right):\frac{2x+1}{x^2+3x+2}-\frac{x+13}{x-2}.$$

94. Решите уравнение при всех значениях параметра а:

a)
$$(a^2 - a - 56)x = a^2 - 64$$
;

$$6) (a^2 + 2a - 8)x = a^2 - 4;$$

B)
$$(a^2 + 5a - 24)x = 2a^2 - 5a - 3$$
;

r)
$$(2a^2 - 5a - 3)x = 3a^2 - 10a + 3$$
.

95. Пусть x_1 и x_2 — корни квадратного трехчлена $2x^2 + 5x + 1$. Найдите значение выражения:

a)
$$x_1 + x_2$$
;

$$(x_1)\frac{x_1}{x_2}+\frac{x_2}{x_1};$$

б)
$$x_1x_2$$
;

e)
$$x_1^3 + x_2^3$$
:

B)
$$\frac{1}{x_1} + \frac{1}{x_2}$$
;
F) $x_1^2 + x_2^2$;

ж)
$$|x_1 - x_2|$$
.

96. Решите предыдущую задачу для квадратного трехчлена $ax^2 + bx + c$.

97. Пусть x_1 и x_2 – корни квадратного трехчлена $3x^2 - 5x + 1$. Напишите квадратный трехчлен с целыми коэффициентами, корни которого равны:

а)
$$2x_1$$
 и $2x_2$;

б)
$$x_1 + 2$$
 и $x_2 + 2$:

б)
$$x_1 + 2$$
 и $x_2 + 2$; в) $x_1 + x_2$ и x_1x_2 .

98. Решите предыдущую задачу для квадратного трехчлена $ax^2 + bx + c$ (где a, b, c — целые числа).

99. а) Найдите сумму корней многочлена $A(x) = 5p^2(x) + 4p(x)q(x) - q^2(x)$, если $p(x) = \frac{x^2}{6} + \frac{x}{6} - \frac{29}{6}, \ q(x) = -\frac{x^2}{6} + \frac{5x}{6} + \frac{71}{6}.$

б) Найдите сумму корней многочлена $A(x) = 8p^2(x) + 7p(x)q(x) - q^2(x)$,

если $p(x) = \frac{x^2}{9} + \frac{x}{9} - \frac{13}{9}, q(x) = -\frac{x^2}{9} + \frac{8x}{9} + \frac{40}{9}.$

100. а) Найдите произведение корней многочлена $A(x) = 12p^2(x)$ – $-11p(x)q(x)-q^2(x)$, если $p(x)=\frac{x^2}{13}+\frac{x}{13}-\frac{3}{13}$, $q(x)=\frac{x^2}{13}-\frac{12x}{13}-\frac{81}{13}$

б) Найдите произведение корней многочлена $A(x) = 10p^2(x) +$ $+9p(x)q(x)-q^2(x)$, если $p(x)=\frac{x^2}{11}+\frac{x}{11}-\frac{41}{11}$, $q(x)=-\frac{x^2}{11}+\frac{10x}{11}-\frac{14}{11}$.

- **101.** а) Найдите все значения, которые может принимать выражение $A = 9x^2 12xy + 4y^2 12x + 8y 4$ при произвольных значениях x и y.
- б) Найдите все значения, которые может принимать выражение $A = 4x^2 + 12xy + 9y^2 12x 18y 3$ при произвольных значениях x и y.
- **102.** Найдите все значения, которые может принимать выражение $A = x^2 + y^2$, если:

a)
$$x - y = 1$$
; 6) $x + y = 2$.

- **103.** а) Найдите все значения параметра p, при которых квадратные трехчлены $2x^2 (3p+2)x + 12$ и $14x^2 (9p-2)x + 36$ имеют хотя бы один общий корень.
- б) Найдите все значения параметра p, при которых квадратные трехчлены $(1-2p)x^2-6px-1$ и px^2-x+1 имеют хотя бы один общий корень.

3. Квадратичная функция и ее график

Уровень А

104. а) Дана функция $y = \frac{1}{5}x^2$. Заполните таблицу.

x	0	±1	±2	±3	±4	±5
y						

Постройте график этой функции. Найдите наименьшее значение этой функции, а также промежутки ее возрастания и убывания.

б) Дана функция $y = -\frac{1}{4}x^2$. Заполните таблицу.

x	0	±1	±2	±3	±4
y					

Постройте график этой функции. Найдите наибольшее значение этой функции, а также промежутки ее возрастания и убывания.

105. а) Постройте в одной системе координат графики функций $y=x^2$; $y=\frac{1}{2}x^2$ и $y=2x^2$ и сравните значения этих функций при x=-2 и x=2.

Каково множество значений каждой из этих функций?

б) Постройте в одной системе координат графики функций $y=-x^2$; $y=-\frac{1}{3}x^2$ и $y=-3x^2$ и сравните значения этих функций при x=-3

и x = 3. Каково множество значений каждой из этих функций?

106. а) Не выполняя построения, найдите координаты точек пересечения графика функции $y = \frac{1}{2}x^2$ и прямой:

1)
$$y = 8$$
; 3) $y = 2x - 2$;

2)
$$y = 50$$
; 4) $y = \frac{1}{2}x + 1$.

б) Не выполняя построения, найд		
ния графика функции $y=-rac{1}{3}x^2$ и прямой:		
1) $y = -27$;	3) $y = 2x + 3$;	
2) $y = -75$;	4) $y = \frac{1}{3}x - 2$.	
107. a) Определите, принадлежит ли г 1) (2; -20); 2) (0,4; -0,8); 3) (-3; 45); б) Определите, принадлежит ли гр 1) (3; -90); 2) (0,1; -0,1); 3) (-2; -40);	4) (-0,2; 0,2); 5) (-3; -45); 6) (-0,2; -0,2).	
108. а) С помощью параллельного пе		
вдоль оси <i>Oy</i> постройте графики функа 1) $y = x^2 - 4$; 2) $y = x^2 - 1$;	жций: 3) $y = x^2 + 1$; 4) $y = x^2 + 3$.	
б) С помощью параллельного пер вдоль оси Oy постройте графики функ 1) $y = 2 - x^2$; 2) $y = -x^2 + 3$;		
109. а) С помощью параллельного певдоль оси Ox постройте графики функт 1) $y = (x+2)^2$; 2) $y = (x+3)^2$; 6) С помощью параллельного первдоль оси Ox постройте графики функт 1) $y = -(x+4)^2$; 2) $y = -(x+3)^2$;	жций: 3) $y = (x-1)^2$; 4) $y = (x-4)^2$. еноса графика функции $y = -x^2$	
110. а) С помощью двух параллельни	ых переносов графика функции	
$y = \frac{1}{3}x^2$ постройте графики функций:		
1) $y = \frac{1}{3}(x-3)^2 - 1;$	3) $y = \frac{1}{3}(x+3)^2 - 2;$	
2) $y = \frac{1}{3}(x+3)^2 + 1;$	4) $y = \frac{1}{3}(x-3)^2 + 2$.	
б) С помощью двух параллельны $y = 2x^2$ постройте графики функций: 1) $y = 2(x-1)^2 - 3$; 2) $y = 2(x+1)^2 + 1$;	ах переносов графика функции 3) $y = 2(x+1)^2 - 2$; 4) $y = 2(x-1)^2 + 4$.	
111. Определите, в каких координатив	ых четвертях расположен график	
функции: a) $y = -(x-1)^2 + 1$; б) $y = (x-3)^2 - 1$;	B) $y = -(x+2)^2 + 3$; F) $y = (x+2)^2 - 2$.	19

112. Определите координаты	вершины параболы:
a) $y = x^2 - 10x + 20$;	B) $u = -x^2 + \frac{1}{2}$

B)
$$y = -x^2 + 4x + 15$$
;

6)
$$y = x^2 + 6x - 11$$
;

$$\Gamma) \ y = -x^2 + 8x + 3.$$

113. Напишите уравнение оси симметрии параболы:

a)
$$y = x^2 - 6x + 5$$
;

B)
$$y = -x^2 + 2x + 8$$
;

$$\text{ 6) } y = \frac{1}{2}x^2 + 2x + 8;$$

$$\Gamma) \ y = -\frac{1}{3}x^2 - 2x + 3.$$

114. Постройте схематически график функции:

a)
$$f(x) = x^2 + 2x - 3$$
;

B)
$$f(x) = 6x - 2x^2$$
;

$$6) f(x) = x^2 - 4x - 12;$$

$$\Gamma(x) = 4x - 2x^2.$$

Найдите:

- 1) нули функции:
- 2) промежутки знакопостоянства;
- 3) множество значений функции;
- 4) наибольшее и наименьшее значения функции;
- 5) промежутки возрастания и убывания.

115. Найдите точки пересечения параболы с осями координат:

a)
$$y = -x^2 - 2x + 3$$
;

B)
$$y = 2x^2 - 3x + 1$$
;

$$\vec{(5)} \ y = x^2 + 4x + 3;$$

$$\mathbf{r}) \ y = -x^2 + 5x - 6.$$

Уровень В

116. Постройте параболу с вершиной в точке $A(x_0, y_0)$ и проходящую через точку $B(x_1, y_1)$, если:

a)
$$A(0; -3)$$
; $B(3; 24)$;

б)
$$A(0; 4); B(-5; -46).$$

117. а) Постройте график функции $y = 3x^2 - 6x + a$, если наименьшее значение этой функции равно:

$$1) -2;$$

б) Постройте график функции $y = -2x^2 - 4x + a$, если наибольшее значение этой функции равно:

$$1)-5;$$

118. а) Постройте график функции $y = -x^2 - x + 6$ при $x \in [-2; 3]$ и найдите, используя график, наибольшее и наименьшее значения функции на этом отрезке.

б) Постройте график функции $y = x^2 - 2x + 3$ при $x \in [0; 3]$ и найдите, используя график, наибольшее и наименьшее значения функции на этом отрезке.

119. Постройте график функции:

a)
$$f(x) = \begin{cases} x^2 + 2x - 3, -4 < x < 2, \\ 5, x \le -4; x \ge 2; \end{cases}$$
 6) $f(x) = \begin{cases} x^2 - 4x - 5, 0 < x < 4, \\ -5, x \le 0; x \ge 4. \end{cases}$

120. а) Найдите, при каких значениях параметра а график функции y = f(x) расположен в первой и второй координатных четвертях:

1)
$$y = 2x^2 - 3x + a$$
;

2)
$$y = 0.4x^2 + 5x - a$$
.

б) Найдите, при каких значениях параметра а график функции y = f(x) расположен в третьей и четвертой координатных четвертях:

1)
$$y = -2x^2 - 5x - a$$
;

2)
$$y = -0.5x^2 + 3x + a$$
.

Конец ознакомительного фрагмента. Приобрести книгу можно в интернет-магазине «Электронный универс» e-Univers.ru