Оглавление

Введение	5
1. РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ ПО ПРОЧНОСТИ НОРМАЛЬНЫХ СЕЧЕНИЙ НА ОСНОРЕ НЕЛИНЕЙНОЙ ЛЕФОРМАЦИОННОЙ МОЛЕЛИ	5
на основе нелинеиной деформационной модели	S
1.1. Основные положения	ว
1.2. Расчет прочности нормальных сечений	6
1.2.1. Расчетная схема усилий	6
1.2.2. Характер разрушения железобетонных конструкций	7
1.2.3. Напряжения в бетоне сжатой зоны	8
1.2.4. Напряжения в сжатой продольной арматуре	14
1.2.5. Напряжения в продольной арматуре, расположенной в растянутой или менее сжатой зоне	15
1.2.6. Расчетные уравнения для нормальных сечений	21
1.2.7. Расчет нормальных сечений	23
2. ПРИМЕРЫ РАСЧЕТА ИЗГИБАЕМЫХ И ВНЕЦЕНТРЕННО СЖАТЫХ ЭЛЕМЕНТОВ БЕЗ ПРЕДВАРИТЕЛЬНОГО НАПРЯЖЕНИЯ АРМАТУРЫ	29
3. РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ ПО ОБРАЗОВАНИЮ ТРЕЩИН НА ОСНОВЕ НЕЛИНЕЙНОЙ ДЕФОРМАЦИОННОЙ МОДЕЛИ	40
3.1. Расчет изгибаемых элементов	40
3.2. Расчет внецентренно сжатых элементов	47
4. ПРИМЕРЫ РАСЧЕТА ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ ПО ОБРАЗОВАНИЮ ТРЕЩИН	48
5. ОПРЕДЕЛЕНИЕ ПРОГИБОВ ИЗГИБАЕМЫХ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ НА ОСНОВЕ НЕЛИНЕЙНОЙ ЛЕФОРМАЦИОННОЙ МОЛЕЛИ	54
51 Предельно допустимые прогибы изгибаемых элементов	54
5.2. Определение кривизны, с использованием билинейной лиаграммы состояния бетона	5 1
5.2. определение кривновы с использованием оклиненион диаграммы состояния остона	55 50
виолиографический список	39
Приложение	60

введение

Внедрение расчета железобетонных конструкций на основе нелинейной деформационной модели в качестве нормативного метода вызвано несколькими причинами. Прежде всего расчет основан на использовании диаграмм σ – ϵ материалов и гипотезе плоских сечений, что является теоретической базой расчета нормальных сечений любого очертания при любом расположении арматуры для двух предельных состояний в отличие от метода расчета по предельным усилиям, дающим надежные результаты только для стандартных сечений — прямоугольник, тавр и двутавр. Представленные диаграммы σ – ϵ для арматуры и бетона могут быть криволинейного очертания как наиболее приближенные к фактическим диаграммам материалов и могут приниматься как упрощенные — кусочно-линейные, позволяющие для простых сечений получать аналитические зависимости по установлению прочности, трещиностойкости и деформаций на основе единого подхода.

1. РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ ПО ПРОЧНОСТИ НОРМАЛЬНЫХ СЕЧЕНИЙ НА ОСНОВЕ НЕЛИНЕЙНОЙ ДЕФОРМАЦИОННОЙ МОДЕЛИ

1.1. Основные положения

Расчетом проверяется прочность сечений, нормальных к продольной оси элемента [1]. При этом предельное состояние элемента определяется условием равновесия усилий от внешних нагрузок и внутренних усилий, а также достижением в бетоне или арматуре предельных деформаций. Прочность сечений железобетонных конструкций считается обеспеченной, если усилия и деформации, возникшие в рассматриваемом сечении от различных воздействий, в том числе с учетом предварительного напряжения арматуры, не превышают соответствующих нормируемых значений.

Таким образом, прочность нормальных сечений обеспечивается соблюдением условий

$$\varepsilon \le \varepsilon_{ult};$$
 (1.1)

$$F \le F_{ult},\tag{1.2}$$

где є и F — соответственно деформация сжатого бетона или растянутой арматуры и усилие, возникающее в рассматриваемом сечении от внешней нагрузки; ε_{ult} и F_{ult} — предельное значение соответственно деформации сжатого бетона или растянутой арматуры и внутреннего усилия в том же сечении.

В общем случае задача состоит в определении усилий или деформаций от внешних воздействий и их предельных значений, допускаемых в рассматриваемом сечении, и решается путем комплексного расчета на статические и динамические нагрузки, температурно-влажностные воздействия и т.п. При этом следует руководствоваться общим правилом для любых видов сечений: нормальных, наклонных или пространственных — усилие в сечении определяется от внешнего воздействия, действующего по одну сторону от рассматриваемого сечения.

Деформации и напряжения в нормальных сечениях определяются на основе нелинейной деформационной модели, основные положения которой заключаются в следующем:

 нормальные сечения до и после деформации под действием внешней нагрузки остаются плоскими. Таким образом, продольные деформации в нормальном сечении распределяются по линейному закону в зависимости от кривизны сечения и расположения рассматриваемой точки в сечении;

 величины деформаций определяются на основе уравнений равновесия внешних и внутренних сил в рассматриваемом сечении; – характер распределения напряжений должен соответствовать линейной эпюре деформаций, а их величины определяются по соответствующим диаграммам деформирования σ–ε арматуры и бетона;

 обобщенные усилия в нормальном сечении определяются с помощью процедуры численного интегрирования эпюры напряжений;

– сопротивление бетона в растянутой зоне не учитывается.

При определении прочности элемента следует рассматривать предельное состояние по сечению в целом, которое можно характеризовать как максимальную величину общего усилия (момента, продольной и поперечной силы), воспринимаемого сечением или достижением максимально допустимых деформаций сжатия – растяжения в бетоне и арматуре.

В зависимости от характера внешнего воздействия сечения могут быть полностью сжаты или растянуты, или иметь сжатую и растянутую зоны. Усилия в сжатой зоне воспринимаются совместно бетоном и арматурой вплоть до предельного состояния; усилия в растянутой зоне до образования трещин — арматурой и бетоном, а после образования трещин — в основном арматурой и, незначительно, частью растянутого бетона, которой, как правило, пренебрегают.

На основании вышесказанного общие положения, которыми следует руководствоваться при расчете сечений по прочности, можно сформулировать следующим образом:

 предельные состояния сечения определяются максимальной величиной общего усилия (момента, продольной и поперечной силы), воспринимаемого сечением или достижением предельных деформаций арматуры и/или бетона;

– расчет нормальных сечений железобетонных элементов следует производить по нелинейной деформационной модели. Для простых по конфигурации сечений и при расположении продольной арматуры в наиболее растянутой и сжатой зонах допускается расчет нормальных сечений производить по предельным усилиям.

1.2. РАСЧЕТ ПРОЧНОСТИ НОРМАЛЬНЫХ СЕЧЕНИЙ

1.2.1. Расчетная схема усилий

Распределение внутренних усилий в нормальном сечении в предельном состоянии зависит от комбинации внешних усилий. При действии только изгибающего момента в нормальном сечении возникают сжатая и растянутая зоны (рис. 1.1, *a*). При внецентренном сжатии в зависимости от эксцентриситета продольной силы в нормальном сечении железобетонного элемента имеют место две расчетные схемы распределения внутренних усилий: случай больших эксцентриситетов (см. рис. 1.1, *a*) — сечение имеет сжатую и растянутые зоны; случай малых эксцентриситетов (рис. 1.1, *б*) — сечение неравномерно, но полностью сжато. При внецентренном растяжении также в зависимости от эксцентриситетах) (см. рис. 1.1, *a*) либо быть полностью растянутые (при малых эксцентриситетах) (рис. 1.1, *b*).

Таким образом, расчетная схема усилий в нормальном сечении включает:

– при наличии сжатой и растянутой зон (см. рис. 1.1, *a*): усилие N_s — в продольной арматуре, расположенной в растянутой зоне; усилие N_b — в бетоне сжатой зоны; усилие N'_s — в продольной арматуре, расположенной в сжатой зоне (основные буквенные обозначения даны в приложении);

– при полностью сжатом сечении (см. рис. 1.1, *δ*): усилие *N_s* — в продольной арматуре, расположенной у менее сжатой грани элемента; усилие *N_b* — в сжатом бетоне; усилие *N'_s* — в продольной арматуре, расположенной у более сжатой грани элемента;

– при полностью растянутом сечении (см. рис. 1.1, *в*): усилие N_s — в продольной арматуре, расположенной у более растянутой грани элемента; усилие N'_s — в продольной арматуре, расположенной у менее растянутой грани элемента.

Усилия, действующие в бетоне и арматуре, определяются по величинам напряжений в бетоне и арматуре, установившихся в предельном равновесии перед разрушением нормального сечения.

Рис. 1.1. Расчетные схемы усилий в нормальном сечении: *а* — при наличии сжатой и растянутой зон; *б* — при полностью сжатом сечении; *в* — при полностью растянутом сечении

1.2.2. Характер разрушения железобетонных конструкций

Разрушение железобетонной конструкции по нормальному сечению происходит, когда бетон или продольная арматура достигли своих предельных характеристик по деформациям, определяемых нормируемой граничной точкой диаграммы σ - ϵ . Соотношение между деформациями в сжатом бетоне и продольной растянутой арматуре определяется их деформативностью и условием равновесия внутренних и внешних сил в нормальном сечении, которое достигается теоретически путем плоского поворота нормального сечения (гипотеза плоских сечений, рис. 1.2, *a*, δ). По деформациям в соответствии с диаграммами бетона (рис. 1.2, *c*) и арматурной стали (рис. 1.2, *d*) устанавливаются значения напряжений в бетоне и растянутой арматуре (рис. 1.2, *в*).

Предельное состояние сечений при изгибе и внецентренном сжатии определяется разрушением сжатого бетона. Это связано с особенностью нормирования предельного состояния арматуры, расчетные сопротивления которых устанавливаются на уровне напряжений ниже предела их прочности, а деформации, соответствующие временному сопротивлению, значительно превышают аналогичную величину в сжатом бетоне (рис. 1.2, *г*, *д*). Таким образом, арматура при достижении напряжения, соответствующего расчетному сопротивлению, в отличие от сжатого бетона имеет запас по деформациям. В связи с этим при разрушении сжатого бетона в растянутой арматуре в зависимости от ее количества могут быть достигнуты напряжения, меньшие или большие расчетного сопротивления.

Предельное состояние при внецентренном растяжении может определяться как разрушением бетона сжатой зоны при больших эксцентриситетах, так и достижением предельных деформаций арматуры при малых эксцентриситетах.

Рис. 1.2. Распределение деформаций и напряжения в нормальном сечении А–А перед разрушением. Диаграммы деформаций бетона и арматурной стали с физическим пределом текучести: *a* — расчетное нормальное сечение; *б* — распределение деформаций; *в* — распределение напряжений; *г* — диаграмма деформаций бетона; *д* — диаграмма деформаций арматуры

1.2.3. Напряжения в бетоне сжатой зоны

Предельное состояние по нормальному сечению в большинстве случаев определяется достижением бетоном сжатой зоны своих предельных деформационных характеристик, определяемых диаграммой σ - ϵ бетона при сжатии, за которыми следует его разрушение.

Фактическая диаграмма σ - ϵ бетона имеет незначительный начальный линейный участок и выраженное криволинейное очертание на оставшемся восходящем (стадия накопления повреждений) и нисходящем (стадия разрушения) участках (см. рис. 1.2, г). В соответствии с этим эпюра напряжений в сжатом бетоне перед разрушением будет иметь также криволинейное очертание с максимумом в пределах сжатой зоны (рис. 1.3). Следует отметить, что соотношение упругих и неупругих деформаций бетона не остается постоянным и меняется в зависимости от многих факторов: вид и класс бетона; скорость и характер нагружения, температурно-влажностные условия и т.д. С увеличением класса бетона доля неупругих деформаций бетона снижается, в результате чего уменьшается кривизна диаграммы σ - ϵ и для высоких классов бетона она приближается к линейной на большей части восходящего участка диаграммы. То же самое происходит и с увеличением скорости нагружения.

В настоящее время имеется немало предложений по описанию диаграммы $\sigma_b - \varepsilon_b$: в виде степенной функции, показательной функции и других более сложных зависимостей. В нормах Европейского комитета по бетону (ЕКБ) [2] принята зависимость в виде

$$\frac{\sigma_b}{R_b} = \frac{k\eta - \eta^2}{1 + (k - 2)\eta},\tag{1.3}$$

где $\eta = \frac{\varepsilon_b}{\varepsilon_{b0}}, k = \frac{E_b \varepsilon_{b0}}{R_b}, \varepsilon_{b0}$ — предельная деформация бетона при его равномерном сжатии.

Эта зависимость обладает следующими преимуществами:

– максимум функции соответствует $\sigma_b = R_b$;

– описывает нисходящую ветвь диаграммы наиболее близко к опытным данным;

– изменения σ_b в самом начальном участке диаграммы соответствуют изменениям σ_b при упругой работе бетона с модулем упругости E_b , т.е. производная функции $\sigma_b = f(\varepsilon_b)$ при $\varepsilon_b = 0$ равна E_b .

Эта функция для бетона классов B25 и B40 представлена в виде графиков на рис. 1.3. Из этих графиков видно, как с увеличением класса бетона на восходящем участке уменьшается кривизна диаграммы, что соответствует уменьшению доли неупругих деформаций бетона.

Рис. 1.3. Диаграмма $\sigma_h - \varepsilon_h$ по ЕКБ

В СП 63.13330.2018 аналитическая зависимость криволинейных диаграмм деформирования бетона (рис. 1.4) принимается в виде

$$\varepsilon_m = \sigma_m / (E_m v_m), \tag{1.4}$$

где ε_m , σ_m , E_m — соответственно относительные деформации, напряжения, начальные модули упругости; m — индекс материала (для бетона m = b, bt); v_m — коэффициент изменения секущего модуля, определяемый по формуле

$$\mathbf{v}_m = \hat{\mathbf{v}}_m \pm \left(\mathbf{v}_0 - \hat{\mathbf{v}}_m\right) \sqrt{1 - \omega_1 \eta - \omega_2 \eta^2},\tag{1.5}$$

где \hat{v}_m — значение коэффициента в вершине диаграммы (при $\sigma_m = \hat{\sigma}_m$); v_0 — начальный коэффициент изменения секущего модуля (в начале диаграммы или в начале ее криволинейного отрезка); ω_1, ω_2 — коэффициенты, характеризующие полноту диаграммы материала, при этом ω_2 определяется по формуле

$$\omega_2 = 1 - \omega_1; \tag{1.6}$$

η — уровень приращения напряжений, который определяется как отношение

$$\eta = \frac{\sigma_m}{\hat{\sigma}_m},\tag{1.7}$$

где σ_m — то же, что и в формуле (1.4); $\hat{\sigma}_m$ — напряжение в вершине криволинейной диаграммы.

В формуле (1.5) знак «плюс» принимают для диаграммы деформирования арматуры и для восходящей ветви диаграммы деформирования бетона, а знак «минус» — для нисходящей ветви диаграммы деформирования бетона. Нисходящую ветвь диаграммы допускается использовать до уровня напряжений $\eta > 0.85$. Нужно заметить, что диаграмма, приведенная на рис. 1.4, построена в непривычных координатах, в которых сжатие принимается со знаком «минус», а растяжение — со знаком «плюс», что необходимо учитывать в расчетах.

Рис. 1.4. Криволинейная диаграмма деформирования бетона

При одноосном и однородном сжатии бетона исходная диаграмма деформирования бетона (см. рис. 1.4) описывается зависимостями (1.4) – (1.7), в которых следует принимать: – для обеих ветвей диаграммы:

$$\begin{split} \hat{\sigma}_{b} &= -R_{b}; \\ \hat{w}_{b} &= \hat{\sigma}_{b} / (\hat{\varepsilon}_{b} E_{b}); \\ \eta &= \sigma_{b} / \hat{\sigma}_{b}; \end{split} \tag{1.8}$$

- для восходящей ветви:

$$v_0 = 1;$$

 $\omega_1 = 2 - 2, 5 \hat{v}_b;$
(1.9)

– для нисходящей ветви:

$$\begin{aligned}
\nu_0 &= 2,05 \,\hat{\nu}_b; \\
\omega_1 &= 1,95 \,\hat{\nu}_b - 0,138.
\end{aligned} \tag{1.10}$$

Абцисса вершины диаграммы осевого сжатия бетона определяется по формуле

$$\widehat{\varepsilon}_{b} = -\frac{B}{E_{b}} \lambda \frac{1+0,75\lambda B / 60 + 0,2\lambda / B}{0,12 + B / 60 + 0,2 / B},$$
(1.11)

где B — класс бетона по прочности на сжатие; λ — безразмерный коэффициент, зависящий от вида бетона и принимаемый равным для тяжелого и мелкозернистого бетона $\lambda = 1$.

При одноосном и однородном растяжении бетона исходная диаграмма деформирования бетона описывается зависимостями (1.4) – (1.5), в которых следует принимать:

$$\begin{split} \widehat{\sigma}_{bt} &= R_{bt} \widehat{\gamma}_{btq}; \\ \widehat{\nu}_{bt} &= \frac{0, 6}{\widehat{\gamma}_{btq}} (1 + 0, 1 R_{bt}); \\ \eta &= \sigma_{bt} / \widehat{\sigma}_{bt}, \end{split}$$
(1.12)

где $\widehat{\gamma}_{btq}$ — коэффициент, принимаемый равным:

– при центральном растяжении: $\hat{\gamma}_{btq} = 1$;

– для изгибаемых элементов по формулам:

$$\widehat{\gamma}_{btq} = \left(\widehat{\gamma}_h + 0,007\right), \quad \widehat{\gamma}_h = 2 - \sqrt[5]{h/h_2} \ge 0,9, \tag{1.13}$$

где $h_3 = 30$ см — некоторая эталонная высота сечения; h — высота сечения, см.

В формуле (1.12) для вычисления \hat{v}_{bt} значение R_{bt} следует принимать в МПа.

Параметры v_0 , ω_1 , ω_2 вычисляют по формулам (1.6), (1.9), (1.10) с заменой \hat{v}_b на \hat{v}_{bt} .

Однако для ряда случаев использование в расчетах такой функции достаточно трудоемко. Поэтому в СП 63.13330.2018 и методических пособиях в качестве расчетных диаграмм рекомендованы трехлинейная и двухлинейная диаграммы (рис. 1.5). Трехлинейная диаграмма (рис. 1.5, *a*) описывается системой выражений в зависимости от продольных деформаций укорочения бетона:

- при $0 \le \varepsilon_b \le \varepsilon_{b1}$:

$$\sigma_b = E_b \,\varepsilon_b; \tag{1.14}$$

- при
$$\varepsilon_{b1} < \varepsilon_b \le \varepsilon_{b0}$$
:

$$\sigma_b = \left[\left(1 - \frac{\sigma_{b1}}{R_b} \right) \frac{\varepsilon_b - \varepsilon_{b1}}{\varepsilon_{b0} - \varepsilon_{b1}} + \frac{\sigma_{b1}}{R_b} \right] R_b; \qquad (1.15)$$

- при $\varepsilon_{b0} < \varepsilon_b \leq \varepsilon_{b2}$:

$$\sigma_b = R_b. \tag{1.16}$$

Рис. 1.5. Расчетная диаграмма состояния сжатого бетона: а — трехлинейная; б — двухлинейная

Значение напряжения σ_{b1} принимается равным $0.6R_b$ — уровень напряжений, соответствующий началу необратимых микроразрушений бетона, а значения относительных деформаций, соответствующих данным напряжениям, составляют $\varepsilon_{b1} = \sigma_{b1} / E_b$.

Значения деформаций ε_{b0} , соответствующих достижению максимальных напряжений, принимаемых равными R_b , и значения предельных деформаций ε_{b2} установлены равными при

кратковременном нагружении для всех видов тяжелого бетона 0,002 и 0,0035 соответственно. При длительном действии нагрузки, вследствие проявления ползучести бетона указанные граничные значения относительных деформаций сжатого бетона возрастают, а модуль упругости бетона E_b существенно снижается [5].

Для двухлинейной диаграммы (рис. 1.5, *б*) напряжения *σ*_{*b*} определяются следующим образом:

- при $0 \le \varepsilon_b \le \varepsilon_{b1,red}$:

$$\sigma_b = E_{b,red} \,\varepsilon_b; \tag{1.17}$$

– при $\varepsilon_{b1,red} < \varepsilon_b \leq \varepsilon_{b2}$:

$$\sigma_b = R_b, \tag{1.18}$$

где $E_{b,red}$ — приведенный модуль деформации бетона, равный

$$E_{b,red} = R_b / \varepsilon_{b1,red}$$

Значения деформаций є_{b1,red} занормированы и равны для кратковременного нагружения — 0,0015.

Сопротивление бетона растянутой зоны рекомендовано учитывать при расчете бетонных элементов по прочности, в которых не допускается образование трещин. В этих элементах связь между осевыми растягивающими напряжениями бетона σ_{bt} и относительными его деформациями ε_{bt} принимается в виде двух- или трехлинейной диаграммы по аналогии с диаграммой сжатого бетона с заменой расчетного сопротивления сжатию R_b на расчетное сопротивление растяжению R_{bt} . Граничные значения напряжений и относительных деформаций для трехлинейной диаграммы деформирования при непродолжительном действии нагрузки принимаются:

для точки 1:

$$\sigma_{bt1} = 0.06R_{bt}; \ \varepsilon_{bt1} = \sigma_{bt1}/E_b;$$

для точки 2:

$$\sigma_{bt0} = R_{bt}; \ \varepsilon_{bt0} = 0,0001;$$

для точки 3:

$$\sigma_{bt2} = R_{bt}; \ \varepsilon_{bt2} = 0,00015.$$

Для двухлинейной диаграммы деформирования при непродолжительном действии нагрузки координаты расчетных точек определяются по аналогии с соответствующей диаграммой сжатия заменой $\varepsilon_{b1,red}$ на $\varepsilon_{bt1,red} = 0,0008$; ε_{b2} на $\varepsilon_{bt2} = 0,00015$.

Форма эпюры бетона сжатой зоны соответственно для трехлинейной и двухлинейной диаграмм будет иметь вид, приведенный на рис. 1.6.

Замена криволинейной диаграммы по ЕКБ (см. рис. 1.3) на кусочно-линейную в некоторой степени упрощает процесс вычисления напряжений, не внося значительных погрешностей в результаты расчета. Так, предельные относительные изгибающие моменты $M_{ult}/(R_b b h_0^2)$ для прямоугольного сечения с одиночной арматурой при использовании диаграмм ЕКБ, трехи двухлинейной соответственно равны:

при бетоне класса В25: 0,379; 0,377; 0,383; при бетоне класса В40: 0,376; 0,376; 0,383. Как видим, расхождения нигде не превышают 2 %.

Рис. 1.6. Распределение напряжений в бетоне на основе трехлинейной и двухлинейной расчетных диаграмм: *a* — распределение напряжений для трехлинейной диаграммы; *б* — распределение напряжений для двухлинейной диаграммы

При этом армирование принималось одинаковым и соответствующим границам переармирования при двухлинейной диаграмме $\sigma_b - \varepsilon_b$. При меньшем армировании расхождение в результатах будет еще меньше.

Учет длительности действия нагрузки при использовании диаграмм σ-ε бетона также мало влияет на результаты расчета. Поэтому в СП 63.13330.2018 рекомендовано учитывать диаграмму σ-ε бетона при кратковременном действии нагрузки.

В принципе, при расчете по прочности можно использовать как трех-, так и двухлинейную диаграмму. Однако в СП 63.13330.2018 рекомендовано применять двухлинейную диаграмму как более простую.

Трехлинейную диаграмму $\sigma_b - \varepsilon_b$ следовало бы применять только при использовании в расчетах максимальных деформаций бетона, меньших $\varepsilon_{b1,red}$ ($\varepsilon_{b11,red}$), поскольку, как видно из рис. 1.5, в этом случае зависимость $\sigma_b - \varepsilon_b$ при двухлинейной диаграмме существенно отличается от кривой $\sigma_b - \varepsilon_b$ по ЕКБ. Поэтому в СП 63.13330.2018 трехлинейную диаграмму рекомендовано использовать только при расчете по деформациям для сечений без трещин, т.е. когда деформации бетона сравнительно невелики.

В качестве предельных напряжений бетона сжатой зоны принята призменная прочность бетона, т.е. прочность бетона при одноосном сжатии, получаемая по результатам испытания бетонных призм размером 15×15×60 см. По данным многочисленных исследований, установлено, что максимальные напряжения в бетоне при центральном сжатии несколько ниже аналогичных напряжений в бетоне при неравномерном сжатии и разница тем выше, чем выше неравномерность напряжений по сечению. Это явление обусловлено сдерживающим влиянием

менее нагруженного бетона на более нагруженный. Тем не менее в качестве предельных напряжений в нормах используется призменная прочность бетона *R*_b, которая ближе всего отвечает фактической прочности бетона в конструкциях.

Расчетные предельные напряжения в сжатом бетоне зависят от условий работы в конструкции. В первую очередь, это длительность действия нагрузки. Испытания бетонных образцов на сжатие показали, что их прочность при длительном нагружении существенно ниже прочности при кратковременном нагружении, причем разница между кратковременной и длительной прочностью достигает 20 %. Снижение прочности объясняется структурой бетона, содержащей в основном твердую и жидкую фазы состояния материала. При длительном действии нагрузки происходит перераспределение усилий между материалами с разными фазами состояния — в основном с жидкой на твердую. Вследствие этого процесс микротрещинообразования в бетоне охватывает больший объем конструкции и приводит к разрушению бетона при более низком уровне нагружения, чем при кратковременной нагрузке.

Для учета влияния длительности действия нагрузки вводится специальный коэффициент условий работы γ_{b1} , умножаемый на расчетное сопротивление бетона R_b . Величина его для тяжелого бетона принята 0,9 при длительном загружении и 1,0 — при кратковременном.

Прочность бетона следует снижать только при действии постоянных и длительных нагрузках. При действии всех нагрузок, включая кратковременные, прочность бетона не снижается. Поэтому в общем случае, кроме расчета на действие всех нагрузок, следует также производить расчет на действие только постоянных и длительных нагрузок с учетом коэффициента $\gamma_{b1} = 0.9$. Однако, если несущая способность сечения обусловлена только прочностью бетона (бетонные элементы или переармированные изгибаемые элементы без сжатой арматуры), то при превышении изгибающего момента M_l от постоянных и длительных нагрузок над 0,9 момента от всех нагрузок можно производить только один расчет на действие момента M_l при учете коэффициента $\gamma_{b1} = 0,9$. Следует отметить, что такой расчет для большинства железобетонных элементов является определяющим при чрезвычайно малой доле кратковременных нагрузок.

1.2.4. Напряжения в сжатой продольной арматуре

Напряжения в продольной арматуре, расположенной в сжатой зоне, определяются из условия совместности деформирования с окружающим сжатым бетоном, вплоть до его разрушения. Таким образом, в предельной стадии при достижении крайними сжатыми волокнами бетона предельных деформаций для ненапряженной арматуры деформации соответствуют деформациям сжатого бетона на уровне этой арматуры ε_{sc} , а напряжения σ_{sc} — этим деформациям по диаграмме σ – ε арматурной стали, т.е.

$$\sigma_{sc} = \varepsilon_{sc} E_s, \tag{1.19}$$

но не более R_s .

Кроме того, исходя из специфики работы сжатого бетона, для деформации ε_{sc} устанавливается некоторое ограничение, в основном обусловленное высоким уровнем напряжений в сжатой арматуре и состоянием окружающего бетона, с накопившимися нарушениями сплошности и вследствие этого снижающейся способностью удерживать арматуру от потери устойчивости. Таким образом, для предельных значений ε_{sc} принимаются наиболее осторожные значения предельного укорочения бетона, отвечающие укорочению бетона при равномерном сжатии, ε_{b0} .

Учитывая, что усредненное значение модуля упругости арматуры составляет $E_s = 2 \cdot 10^5$ МПа, а предельные расчетные деформации сжатого бетона при непродолжительном действии нагрузки составляют $\varepsilon_{b0} = 0,002$, при длительном действии нагрузки — $\varepsilon_{b0} = 0,0025$, приняты следующие предельные напряжения сжатия: при непродолжительном действии нагрузки — 400 МПа; при продолжительном действии нагрузки — 500 МПа. Следует отметить, что для мягких сталей классов А240 и А400 предельные напряжения будут иметь меньшие значения, чем указанные выше.

Для определения напряжений в предварительно напряженной арматуре, расположенной в сжатой от внешней нагрузки зоне бетона, необходимо учитывать начальный уровень растягивающих напряжений σ_{sp} . С ростом внешней нагрузки происходит снижение уровня растягивающих напряжений. Таким образом, для наиболее сжатого волокна бетона к деформациям от усилия предварительного обжатия добавляются деформации от внешней нагрузки, и в сумме в предельной стадии они должны соответствовать предельным укорочениям бетона ε_{b2} . Учитывая установленные ограничения для напряжений сжатия и то, что для предварительного напряжения, как правило, используются стали с расчетным сопротивлением на растяжение выше 400 МПа, напряжения сжатия в арматуре составят

$$\sigma_{sc} = 400 - \sigma_{sp}$$
 или $\sigma_{sc} = 500 - \sigma_{sp}$. (1.20)

Напряжения σ_{sc} в зависимости от величины напряжений σ_{sp} могут быть растягивающими или сжимающими. В последнем случае они принимаются не более сопротивления арматурной стали на сжатие R_{sc} .

Для нормальной работы сжатой арматуры она должна иметь надлежащее сцепление с бетоном, обеспечивающее их совместные деформации, а также быть закрепленной от потери устойчивости и выпучивания в поперечном направлении. Последнее достигается защитным слоем бетона и установкой поперечных стержней, охватывающих продольную арматуру (в вязаных каркасах) либо приваренных к ней (в сварных каркасах). При этом расстояние между хомутами должно быть не более 500 мм и не более $15d_s$. При большом насыщении элемента продольной сжатой арматурой (более 1,5%) должно предусматриваться более $10d_s$). То же самое относится к местам стыкования рабочей арматуры внахлестку без сварки.

Перечисленные требования не относятся к сжатой арматуре, фактически расположенной в элементе, но не учитываемой в расчете, поскольку в этом случае сжатые бетон и арматура не будут находиться в предельном состоянии [5].

1.2.5. Напряжения в продольной арматуре, расположенной в растянутой или менее сжатой зоне

Напряжения в продольной арматуре, расположенной в растянутой или менее сжатой зоне, в предельной стадии могут изменяться в широких пределах в зависимости от напряженно-деформированного состояния сечения. В изгибаемых элементах растянутую арматуру проектируют из условия, что в предельной стадии напряжения в ней достигают расчетного сопротивления R_s ранее или одновременно с достижением в бетоне сжатой зоны предельных деформационных характеристик. Деформации в продольной арматуре в предельном состоянии при двузначной эпюре деформаций, согласно гипотезе плоских сечений (см. рис. 1.6, *a*), равны

$$\varepsilon_s = \frac{\varepsilon_{b2} \left(h_0 - x \right)}{x} = \varepsilon_{b2} \left(\frac{1}{\xi} - 1 \right). \tag{1.21}$$

Многочисленными исследованиями установлено, что так называемое предельное равновесие сечения наступает, если высота сжатой зоны *x* не превышает граничной x_R для данного изгибаемого элемента. Физическая сущность этого явления становится понятной при рассмотрении напряженно-деформированного состояния сечения (рис. 1.7). При разрушении бетона сжатой зоны краевые деформации в бетоне соответствуют предельным значениям ε_{b2} , которые приняты в качестве постоянной величины. Для максимальных деформаций сжатой грани бетона ε_{b2} и деформации растянутой арматуры ε_{s0} , при которой напряжение достигает R_s , на основании (1.21) справедливо отношение

$$\frac{\varepsilon_{b2}}{\varepsilon_{s0}} = \frac{x_R}{h_0 - x_R}.$$
(1.22)

Деформации растянутой арматуры определяются по формуле

$$\varepsilon_{s0} = \frac{\varepsilon_{b2} (h_0 - x_R)}{x_R}$$
$$\varepsilon_{s0} = \varepsilon_{b2} (1/\xi_R - 1). \tag{1.23}$$

или

$$\xi_R = \frac{x_R}{h_0} = \frac{1}{1 + \frac{\varepsilon_{s0}}{\varepsilon_{b2}}}.$$
(1.24)

При $\varepsilon_{b2} = 0,0035$ и $\varepsilon_{b0} = R_s / E_s$ (где R_s — в МПа) выражение (1.24) можно представить в виде

 $-\mathbf{B} \mathbf{x}_{R} = \frac{1}{1 + \frac{\varepsilon_{s}}{700}}.$

Рис. 1.7. Расчетная схема к определению напряженного состояния нормального сечения: *а* — схема изгибаемого элемента; *б* — эпюра деформаций;

в, *г* — эпюры распределения напряжений при $x = x_R$ и $x > x_R$ соответственно;

д — распределение напряжений при расчете по предельным усилиям

Рис. 1.8. Криволинейная диаграмма деформирования ненапрягаемой арматуры

Конец ознакомительного фрагмента. Приобрести книгу можно в интернет-магазине «Электронный универс» <u>e-Univers.ru</u>