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Preface 

The present book originated as lecture notes of our courses in different fields of 
mechanics and engineering, revealing that typical master students either completely 
forget or do not know some of the basic concepts of higher mathematics that are needed 
for proper understanding the specific material in mechanics. Depending on the nature of 
the course and the student average level in mathematics, we had to devote several 
lectures just to cover students' shortage knowledge in mathematics.  

The decision to write a lecture course on specific topics of higher mathematics 
that are admittedly indispensable for master students' was supported by our colleagues 
from the Institute for Problems in Mechanics of Russian Academy of Sciences 
(Moscow, Russia) and INSA de Lyon (Lyon, France).  

The book is divided into chapters covering topics on topology, metric, normed, 
and functional spaces. We wrote a brief introduction to the theory of distributions, 
elements of complex analysis, and several sections on wavelet approximations. There is 
also a chapter on integral transforms including Fourier, Laplace, Mellin, and some other 
integral and discrete transforms. We wrote a rather detailed exposition of the theory of 
matrices, including functions of matrices and a special but important case of non-
semisimple degeneracy. The course also contains a chapter on ordinary differential 
equations, including introduction to Hamiltonian formalism and a survey of the relevant 
numerical methods.  

The authors are acknowledged to all our colleagues and students who helped us 
in preparing the lecture course and the manuscript. 

Authors 

Sergey Kuznetsov 
Elena Kosheleva 
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Chapter 1. Equation Chapter 1 Section 0
Topological, metric, functional, and 

vector spaces  
This chapter presents the basic mathematical facts and concepts needed for the theory of 
vibrations, namely: basic properties of the elementary functions, complex variable 
method, methods of linear algebra, and some basic facts of the theory of ordinary 
differential equations. The reader familiar with these topics can easily pass to the 
subsequent chapters.  

1.1. Equation Chapter 1 Section 1 Basics         
of topological and metric spaces 

This paragraph is devoted to  The main reference books for this chapter are Bourbaki (1989, 
1998), Edwards (1995), and Hörmander (2003).  

1.1.1. Topological spaces 

Definition 1.1.1 (Topological space) 

Topological space T  is a space containing a set Λ  of its subsets (called topology of the space 
T ) with the following properties: 

I. ∅∈Λ ; 
II. If 1 2,L L ∈Λ , then 1 2L L∩ ∈Λ  and 1 2L L∪ ∈Λ ;

III. 
L

L T
∈Λ

=∪  (union of all the subsets L  belonging to Λ  coincides with T ). 

Subsets L  are called “open” sets. 

Definition 1.1.2 (Open vicinity) 

An open vicinity of the point x T∈  is any subset L∈Λ , containing x . 
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Definition 1.1.3 (Open subset) 

A subset C T⊂  is called open, if it belongs to the open set Λ . 

Definition 1.1.4  (Closed subset) 

A subset C T⊂  is called closed, if it is a complement to an open set. 

Definition 1.1.5 (Everywhere dense subset)  

A subset S T⊂  is called everywhere dense, if any open vicinity L∈Λ  contains at least one 
point from S . 

Definition 1.1.6 (Separable topological space) 

Topological space is called (closed) separable, if it contains a countable everywhere dense 
subset. 

Definition 1.1.7 (Homeomorphism) 

Let ,X Y  be two topological spaces.  

I. A map :f X Y→  is called continuous, if 1( )f V X− ⊂  is open for any open V Y⊂ . 
II. A map :f X Y→  is called homeomorphism if f  is a one-to-one correspondence and 

both f  and 1f −  are continuous functions. 

Remark 1.1.1 (Locally convex topological space) 

In the subsequent analyses all the topological spaces will be assumed to be locally convex. This 
means that their topologies can be defined by the corresponding sets of the convex subsets.  

1.1.2. Metric and normed spaces 

Definition 1.1.8 (Metric space) 

Topological space T  is called a metric space, if its topology is defined by a distance function 
:d T T× →\  with the following properties: 

I. ( , ) 0d x y = , if and only if x y=  
II. ( , ) ( , ) ( , )d x z d x y d y z≤ +  (inequality of triangle) 
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Topology in the metric space is defined by a system of balls ,xV δ  of radius 0δ >  with origins at 
points x T∈ : 

 ,
0

( , )x
x T

x y V d x yδ
∈ δ>
∀ ∀δ ∈ ⇔ < δ  (1.1.1) 

 
Inequalities I and II from the preceding definition imply: 

Proposition 1.1.1 

 ( , ) 0, ( , ) ( , )d x y d x y d y x≥ =  (1.1.2) 

Definition 1.1.9 (Normed space) 

Topological vector space T  is called a normed space, if its topology is defined by a norm 
:N T →\  with the following properties: 

 ( ) 0 0N = ⇔ =x x , (1.1.3) 

 

 
,

( ) ( ) ( ) ,
T

N N N
∈

+ ≤ + ∀
x y

x y x y x y , (1.1.4) 

 

 ( ) ( )
Tt

N t t N t
∈∈

= ∀ ∀
x

x x x
^

. (1.1.5) 

 
 

It can be shown that conditions (1.1.3) – (1.1.5) ensure: 

Proposition 1.1.2 

 ( ) 0
T

N
∈
∀ >
x

x x . (1.1.6) 

Definition 1.1.10 (Cauchy sequence) 

Cauchy sequence is an infinte countable sequence { }nx , whose elements become infinitely 
close with the incresing number, this means 

 
0 .

( )n n
n n

n n N
ε

ε
ε

ε> >
∀ε ∃ ∀ − < εx x  (1.1.7) 
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Definition 1.1.11 (Complete normed space) 

Banach space is a complete normed space, which means that any Cauchy sequence converges to 
an element belonging to this space. 

Remark 1.1.2 

The norm of the Banach space is quite often denoted by x  or x . 

Example 1.1.1 ( pL -norm in a finite dimensional vector space with finite , 1p p∈ ≥\ ) 

Let T  be n -dimensional vector space, then pL -norm (denoted by pL⋅ ) is a function

1/

1
p

pn
p

kLT k
x

∈ =

⎛ ⎞
∀ ≡ ⎜ ⎟⎜ ⎟

⎝ ⎠
∑

x
x x , (1.1.8)

where , 1,...,kx k n=  are coordinates of vector x  in a particular basis. Direct verification shows 
that conditions (1.1.3) – (1.1.5) are satisfied at any 1p ≥ . 

Remark 1.1.3 (Euclidian norm) 

The 2L -norm (1.1.8) at 2p =  is used most often: 

( )2

1/ 2
1/ 22

1

n

kLT k
x

∈ =

⎛ ⎞
∀ ≡ ≡ ⋅ ≡⎜ ⎟⎜ ⎟

⎝ ⎠
∑

x
x x x x x (1.1.9)

This norm is sometimes called as Euclidian norm. 

Example 1.1.2 ( L∞ -norm in a finite dimensional vector space) 

Such a norm is defined by 

max kL k
x∞ ≡x . (1.1.10)

L∞ -norm is sometimes called uniform norm. It can be shown, that conditions (1.1.3) – (1.1.5) 
are satisfied. 
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Example 1.1.3 ( pL -norm in an infinite dimensional vector space at finite , 1p p∈ ≥\ ) 

Let T  be a vector space of the all integrable on some set X  functions, then pL -norm (denoted 
by pL⋅ ) is a map T +→ \  defined by

1/

( )p

p
p

L
f T X

f f f x dx
∈

⎛ ⎞
∀ ≡ ⎜ ⎟⎜ ⎟

⎝ ⎠
∫ . (1.1.11)

Example 1.1.4 ( L∞ -norm in an infinite dimensional vector space of numerical functions) 

sup ( )L
x X

f f x∞
∈

≡ . (1.1.12)

Such a norm is called the uniform norm. 

Remark 1.1.4 

A. Condition 1p ≥  in Examples 1.1.1 and 1.1.3 is needed to satisfy inequality (1.1.4), 
known also as Minkowski inequality. At 1p <  condition (1.1.4) fails.  

B. In any of functional spaces , 1pL p≤ ≤ ∞ , space of continuous functions is dense in the 

corresponding pL -topology. 

C. The following embedding of spaces pL  takes place:  

,q pL L q p⊂ > , (1.1.13)

and at q p>  the topology qL  is stronger than topology pL  induced in qL .  

Theorem 1.1.1 (Hölder’s inequality) 

A. Let f  be an integrable function, then a set I  of real p , 1 p≤ ≤ ∞ , at which pL -norms 
pLf  are finite, is either empty, or a closed interval. In the latter case log( )pLf  is a

convex function of 1/ p .   
B. If integrable function f  has a finite support, then the interval I  is either empty, or has 

1p =  as the starting point. In the latter case pLf  is the increasing function of p .

C. Let Pf L∈  and qg L∈ , where 1 p≤ ≤ ∞ , 1 q≤ ≤ ∞  and  

1 1 1
p q
+ = , (1.1.14)
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then 1fg L∈  and  

 1 p qL L Lfg f g≤  (1.1.15) 

Remark 1.1.5  

Inequality (1.1.15) is known as Hölder’s inequality. At 2p =  (and hence 2q = ) inequality 
(1.1.15) is also called as Cauchy – Bounjakowsky inequality.  

1.1.3. Hilbert spaces 

Definition 1.1.12 (Hilbert space)  

Function g  mapping real vector space T  into \ , or into ^ , if T  is a complex vector space, is 
called linear, if  

 
,

or

, ( ) ( ) ( )

( ) ( )

T

T c

g g g

c g c cg

∈

∈ ∈

∀ + = +

∀ ∀ =

x y

x

x y x y x y

x x x
\ ^

. (1.1.16) 

Function satisfying conditions (1.1.16) is quite often called linear form. 

Definition 1.1.13 (Bilinear form) 

Function g  mapping real vector space T T×  into \ , is called bilinear, if it is linear with 
respect to each of its arguments. Such a function is quite often called bilinear form.  

Definition 1.1.14 (Symmetric bilinear form) 

Bilinear form g  is called symmetric, if  

 
,

, ( , ) ( , )
T

g g
∈

∀ =
x y

x y x y y x . (1.1.17) 

Definition 1.1.15 (Sesquilinear form) 

Function g  mapping complex vector space T T×  into ^ , is called sesquilinear, if it is linear 
with respect to the first argument at fixed second argument, and the complex-conjugate  
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function g  (this will be precisely defined later on in this chapter) is linear with respect to its 
second argument at fixed first argument. Such a function is quite often called a sesquilinear 
form.  

Definition 1.1.16 (Hermitian form) 

Bilinear form g  is called Hermitian, if  

( , ) ( , )g g=x y y x . (1.1.18)

Definition 1.1.17 (Scalar product) 

Symmetric or Hermitian form (depending upon real or complex vector space is considered) is 
called scalar product, if 

, 0
( , ) 0

T
g

∈ ≠
∀ >

x x
x x x . (1.1.19)

Quite often scalar product is denoted by ,⋅ ⋅  or ( ),⋅ ⋅ .

Definition 1.1.18 (Hilbert space)  

A normed space (usually Banach space) is called Hilbert space, if it is complete and its norm is 
defined by a scalar product  

,⋅ ≡ ⋅ ⋅ . (1.1.20)

Remark 1.1.6 (Euclidian space) 

A finite dimensional vector space equipped with the scalar product is called Euclidean space. 

Proposition 1.1.3 (Cauchy –Schwartz inequality, known also as the Cauchy – Bunyakovsky – 
Schwartz inequality)  

,
, , , ,
T∈

∀ ≤ =
x y

x y x y x x y y x y . (1.1.21)

Proof  
The proof directly follows from inequality (1.1.19), yielding  

or,
, , 0

cT
c c c

∈∈
∀ ∀ − − ≥
x y

x y x y x y
\ ^

. (1.1.22)
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Taking  

,
,

c =
x x
y y

, (1.1.23)

where we assumed that , 0≠y y  (otherwise inequality (1.1.21) becomes trivial), and 
substituting (1.1.23) into (1.1.22), we arrive at the desired inequality (1.1.21).  

Remark 1.1.7 

Banach space pL  introduced in Example 1.1.3, at 2p =  can be associated with the 
corresponding Hilbert space, if scalar multiplication is defined by  

, ( ) ( )
X

f g f x g x dx≡ ∫ . (1.1.24)

1.1.4. Duality  

Definition 1.1.19 (Dual topological space) 

Let ℑ  be a topological space, then the dual space ′ℑ  is a space of all continuous linear forms 
(i.e. continuous linear functions defined on ℑ  and taking values in \ ).  

Definition 1.1.20 (Weak topology) 

It is possible to introduce the weakest topology in ℑ , in which all the linear forms from ′ℑ  
remain continuous. Such a topology is denoted by ( , )′σ ℑ ℑ , and it is called a weakened 
topology in ℑ , since it is not stronger than the initial topology in ℑ .  

Similarly, in the dual space ′ℑ  (which can have no topology at all) it is possible to introduce a 
dual topology ( , )′σ ℑ ℑ , in which elements of ℑ  regarded as linear forms, are continuous. 

Definition 1.1.21 (Mackey topology) 

In the initial topological space ℑ  it is possible to introduce the strongest topology, in which all 
the linear forms from the dual space ′ℑ  remain continuous. Such a topology is known as 
Mackey topology, this is denoted by ( , )′τ ℑ ℑ .  
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Remark 1.1.8  

The initial topology T  in ℑ  satisfies the following condition: 

( , ) ( , )T′ ′σ ℑ ℑ ≤ ≤ τ ℑ ℑ , (1.1.25)

where sign “≤ ” means a weaker topology.  

Proposition 1.1.4  

Let real p  1 p≤ ≤ ∞  and q  1 q≤ ≤ ∞  satisfy relation (1.1.14), then topological spaces pL  and 
qL  of numerical functions are dual spaces.  

1.1.5. Sobolev functional spaces  

Definition 1.1.22 (Space of locally integrable functions; Sobolev space) 

Let E  be a topological space, and ( )kC E  be a set of all real (or complex) valued functions 

having continuous derivatives up to k -th order. This set is not complete in p
locL -topology 

1 p≤ < ∞  induced in ( )kC E , where p
locL  is a space of all locally integrable in p -th power 

functions defined on E . The term locally integrable means that functions from p
locL  are 

integrable on any bounded subsets of E . On ( )kC E  a stronger topology than p
locL  can be 

defined by introducing the following semi-norms: 

( )
,

0

k pp m
k loc locm

f f
=

≡ ∑ , (1.1.26)

where ( )kf C E∈ . Even in this stronger topology the space ( )kC E  is not complete. Closer of 

( )kC E  in topology defined by (1.1.26) is called Sobolev space and denoted by ,
p

k locW .

Remark 1.1.9 

Quite often in applications topological space E  is compact; for example, it can be a ball in n\  
or a closed interval in \ : In such a case condition of local integrability can be substituted by 
condition of integrability, and the corresponding Sobolev space is denoted by p

kW . 
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Proposition 1.1.5 (Sobolev embedding theorem)  

Let E  be a compact in n\  and k , m  be natural numbers and 1 ,p q< < ∞ . If   

& / /k m k n p m n q> − > − , (1.1.27)

then 
p q

mkW W⊆ (1.1.28)

and embedding is continuous ( p
kW -topology is stronger than q

mW ).

Remarks 1.1.10 (Rellich-Kondrashov theorem)  

A. Sobolev embedding theorem is also known as Rellich-Kondrashov theorem. 

B. Conditions of the theorem remain valid if q = ∞ . In such a case for any natural n  and real 
p  (1 p< < ∞ ) the following embedding theorem takes place: 

( )p m
kW C E⊆ , (1.1.29)

provided 

/k n p m− > . (1.1.30)

Thus, at satisfying condition (1.1.30) functions from p
kW  have continuous derivatives up to

m -th order. 

C. There are generalizations of Sobolev spaces with fractional index k ; these generalizations 
known also as Hörmander spaces will be considered in Chapter 2. 

1.2. Equation Chapter 1 Section 2 (Real) 
trigonometric, hyperbolic, and some other 

functions and series 
In this section we present only those properties of the corresponding (real) elementary 
functions that will be needed for the further analyses. For references see Korn and Korn 
(2000) and Titchmarsh (1976).  
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1.2.1. Trigonometric functions 

Definition 1.2.1 (Sine function; Cosine function)) 

Sine and cosine functions can be defined by the following equivalent equations. 
1) These are functions defined by the following series:

3 5 7 2 1
1

1
sin( ) ... ( 1)

1! 3! 5! 7! (2 1)!

n
n

n

x x x x xx
n

−∞
−

=
≡ − + − + = −

−∑ (1.2.1)

2 4 6 2

0
cos( ) 1 ... ( 1)

2! 4! 6! (2 )!

n
n

n

x x x xx
n

∞

=
≡ − + − + = −∑ . (1.2.2)

2) These functions are solutions of the following differential equation:
2

2 1 ( ) 0d f x
dx

⎛ ⎞
+ =⎜ ⎟⎜ ⎟

⎝ ⎠
. (1.2.3)

Definition 1.2.2 (Real analytic function) 

A function is (real) analytic (in particular vicinity), if it can be expanded into a power series, 
convergent in that vicinity. 

Proposition 1.2.1 

Power series in the right-hand sides of (1.2.1), (1.2.2) converge everywhere in ( , )−∞ ∞ , 
ensuring both sine and cosine to be (real) analytic functions 

Proof  
Proof of the proposition flows out directly from expressions (1.2.1), (1.2.2), and Stirling’s 
estimate for the factorial; see: 

( )( )! 2 exp log 1 ,n n n n n≈ π − → ∞ . (1.2.4)

Combining (1.2.1), (1.2.2), (1.2.4) yields for sine and cosine functions: 

( )( )exp log 2
,

! 2

k k kx k
k k

− −
→ ∞

π
∼ , (1.2.5)

where parameter k in (1.2.5) corresponds to 2 1n −  for sine and 2n  for cosine function. 
Asymptotic estimate (1.2.5) ensures convergence of the regarded series.  
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Corollary 

Any power series  

!

k

k
k

xa
k∑ (1.2.6)

with coefficients ka  satisfying asymptotic estimate 

( )exp( log ) ,ka o k k k k →∞∼ , (1.2.7)

defines a real analytic function in ( , )−∞ ∞ . The symbol o , known as the small Landau symbol, 
denotes that sequence ka  increases weaker at k →∞  than the expression in the right-hand 
side of (1.2.7).  

Proof  
Proof flows out from estimate (1.2.5). 

Remark 1.2.1 
From definitions (1.2.1) – (1.2.3) it can be difficult, if possible, to deduce that both sine and 
cosine are periodic functions.  

We shall also need some other trigonometric functions, which definitions are given below. 

Definition 1.2.3 (tangent function; Cotangent function) 

Tangent and cotangent functions can be defined by the following equivalent equations. 
1) These functions are expressed in terms of ratios of sine and cosine functions:

sin( )tan( )
cos( )

xx
x

= (1.2.8)

cos( )cot( )
sin( )

xx
x

= (1.2.9)

2) These functions are expressed in terms of power series (convergent at
2

x π<  for tangent and

0 x< < π  for cotangent): 
2 2

1 2 12

1

2 (2 1)tan( ) ( 1)
(2 )!

k k
k kk

k

Bx x
k

∞
− −

=

−= −∑ (1.2.10)
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2

22

1

1 2cot( ) ( 1)
(2 )!

k
k kk

k

Bx x
x k

∞

=
= −∑ , (1.2.11) 

where 2kB  are Bernoulli numbers. These numbers can be calculated by the following recurrent 
formula: 

 0 1 21, 1 ... 0
1 2 1 k
k k k

B B B B
k

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠
. (1.2.12) 

3) These functions are solutions of the following (nonlinear) differential equations: 

 
2

2 tan( ) tan( ) 0d dx x
dxdx

⎛ ⎞
− =⎜ ⎟⎜ ⎟

⎝ ⎠
, (1.2.13) 

 
2

2 cot( ) cot( ) 0d dx x
dxdx

⎛ ⎞
+ =⎜ ⎟⎜ ⎟

⎝ ⎠
. (1.2.14) 

 
Some basic properties of trigonometric functions: 

 2 2sin ( ) cos ( ) 1x x+ = , (1.2.15) 

 

 sin(2 ) 2sin( )cos( )x x x= , (1.2.16) 

 2 2 2 2cos(2 ) cos ( ) sin ( ) 1 2sin ( ) 2cos ( ) 1x x x x x= − = − = − , (1.2.17) 

 2
2 tan( )tan(2 )

1 tan ( )
xx

x
=

−
, (1.2.18) 

 
2cot ( ) 1cot(2 )

2cot( )
xx

x
−= , (1.2.19) 

 

 sin( ) sin( ) 2sin cos
2 2

A B A BA B ±± = ∓ , (1.2.20) 

 cos( ) cos( ) 2cos cos
2 2

A B A BA B + −+ = , (1.2.21) 

 cos( ) cos( ) 2sin sin
2 2

A B A BA B + −− = − , (1.2.22) 

 sin( )tan( ) tan( )
cos( )cos( )

A BA B
A B

±± = , (1.2.23) 
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