Содержание

Введение	5
1. Натурные испытания конструкций здания	6
1.1. Анализ исходных данных	6
1.2. Основные средства измерения	7
1.3. Основные требования к наружным ограждающим	
конструкциям и теплоэнергетическим параметрам здания	7
1.4. Определение минимально допустимого перепада между	
наружным и внутренним воздухом	10
1.5. Методика проведения теплотехнического обследования	
наружных ограждающих	11
1.6. Натурные испытания наружных ограждающих конструкций	
здания	
1.6.1. Натурные испытания наружных стен здания	15
1.6.2. Натурные испытания светопрозрачных конструкций	16
1.6.3. Натурные испытания утепления чердачного перекрытия	17
1.6.4. Натурные испытания покрытия пола 1-го этажа	18
1.7. Тепловизионная съемка наружных ограждающих	
конструкций	18
2. Обработка результатов натурных испытаний	20
2.1. Законы распределения случайных величин	20
2.1.1. Нормальный закон распределения	20
2.1.2. Равномерный закон распределения	22
2.1.3. Логарифмически нормальный закон распределения	25
2.1.4. Закон Вейбулла	26
2.2. Критерии согласия	29
2.3. Анализ структуры выборок	32
2.4. Показатели выборок	33
2.5. Обработка результатов натурных испытаний ограждающих	
конструкций	36
2.5.1. Обработка результатов натурных испытаний наружных	
стен здания	36

2.5.2. Обработка результатов натурных испытаний светопрозрачных конструкций	40
2.5.3. Обработка результатов натурных испытаний утепления чердачного перекрытия	44
2.5.4. Обработка результатов натурных испытаний покрытия пола 1-го этажа	46
3. Обоснование энергоэффективности здания	49
3.1. Термины и определения	
3.2. Требования нормативно-правовой документации	49
3.3. Расчет нормируемых характеристик воздухопроницаемости	
ограждающих конструкций и помещений	56
3.4. Расчет фактических характеристик воздухопроницаемости	
ограждающих конструкций и помещений	59
3.5. Оценка погрешности измерений	66
3.6. Проверка соответствия фактических значений	
нормируемым	70
4. Повышение энергетической эффективности теплопотребления	
объекта при организации АИТП	72
4.1. Назначение АИТП	72
4.2. Конструктивное описание	73
4.3. Принцип работы	76
4.4. Состав функций системы диспетчеризации АИТП	78
4.5. Методика расчёта эффективности мероприятия	79
4.6. Практика эксплуатации и фактическое снижение	
теплопотребления	83
4.7. Выводы работы АИТП	83
Заключение	85
Список использованной литературы	87
Приложение А	89
Приложение Б	101
Приложение С	103

Введение

Недвижимое имущество, служебно-технические здания, жилищный фонд ОАО «РЖД», по-прежнему, остается одним из самых проблемных секторов экономики компании.

Важной и актуальной задачей в сфере коммунального хозяйства является осуществление комплекса мер по рациональному использованию энергоресурсов. Большинство служебно-технические зданий не отвечают современным требованиям энергосбережения, так как построены они с учетом старых строительных норм. Повышение цен на энергоресурсы, истощение природных ископаемых и экологические проблемы заставляют хозяина инфраструктуры предпринимать меры по рационализации использования энергоресурсов.

В связи с этим комплексное решение проблем эффективного энергопотребления внедряется при проектировании зданий и планировании развития отраслей компании.

Настоящая работа выполнена в соответствии с заданием от 05 июня 2020 г.

Целью работы являются: проведение натурных испытаний по определению воздухопроницаемости ограждающих конструкций и обработка результатов натурных испытаний по обеспечению соблюдения требований энергетической эффективности зданий, строений и сооружений на объекте: «Служебно-техническое здание управления Новосибирского территориального управления

г. Новосибирск ул. Шамшурина, 33.

Технико-экономические показатели

Площадь служебных помещений	6855 м ²
Общая площадь здания	$8112,2 \text{ m}^2$
Площадь застройки	803 m^2
Строительный объем	$19349,4 \text{ m}^2$

1. Натурные испытания конструкций здания

1.1. Анализ исходных данных

Рассматриваемое служебно-техническое здание — односекционный, 8-этажный, с теплым подвалом, в котором находятся помещения для прокладки инженерных коммуникаций и вспомогательные помещения. На всех этажах размещаются служебные помещения для работников Новосибирского региона.

Планировочные решения помещений обусловлены ориентацией служб, дирекций, находящихся в данном здании.

Отапливаемая площадь здания — 6960,2 м², полезная площадь здания — 6960,2 м², отапливаемый объем здания — 18234,0 м³. Площадь наружных стен здания — 4398,0 м², площадь оконных блоков — 871,0 м², площадь чердачного перекрытия, покрытия лестничных клеток здания — 487,5 м², площадь покрытия пола 1-го этажа здания — 687,5 м², площадь входных дверей — 27,0 м².

Наружные ограждающие конструкции:

1. Покрытие пола 1-го этажа

Монолитное железобетонное перекрытие толщиной 180 мм, теплоизоляционный слой из экструдированного пенополистирола толщиной 100 мм, стяжка из цементно-песчаного раствора армированная сеткой толщиной 70 мм, покрытие пола.

В техническом этаже размещены инженерные коммуникации (температура воздуха не ниже 2 °C).

2. Наружные стены

Композитные фасадные панели с утеплением 150 мм, внутренний слой из полнотелого красного кирпича толщиной 250 мм, штукатурка толщиной 20 мм.

3. Чердачное перекрытие

Монолитное железобетонное перекрытие толщиной 150 мм, теплоизоляционный слой из экструдированного пенополистирола толщиной 50 мм, стяжка из цементно-песчаного раствора армированная сеткой толщиной 50 мм.

4. Светопрозрачные заполнения

Оконные блоки — пластиковые, с 2-х камерным стеклопакетом (4М1-14-4М1-16-И4), с мягким селективным покрытием (теплоотражающее покрытие).

1.2. Основные средства измерения

В качестве основных средств измерения применялось следующее оборудование:

1. Для тепловизионной съемки: тепловизор Testo 875-2i со следующими техническими характеристиками:

диапазон контролируемых температур	-20 − +600 °C
предел температурной чувствительности	0,05°C
угловые размеры поля обзора	23° × 17°
число элементов разложения по строке	320
число строк в кадре	240

2. Для дистанционного контроля температуры наружного и внутреннего воздуха, влажности в помещениях, а также скорости ветра: метеометр «МЭС-200А» с следующими техническими характеристиками:

относительная влажность 0-98% температура -40-+85 °C скорость 0,1-20 м/с

3. Измерение геометрических размеров и расстояний: лазерная рулетка Mettro CONDTROL 100 Pro с следующими техническими характеристиками:

диапазон измерений 0,1 –100 м

Используемая аппаратура и оборудование внесено в государственный реестр как средство измерения, имеет свидетельства о поверке, а также полностью удовлетворяет требованиям для проведения тепловизионного контроля качества теплоизоляции ограждающих конструкций в соответствии с ГОСТ 26629-85.

1.3. Основные требования к наружным ограждающим конструкциям и теплоэнергетическим параметрам здания

Требуемое сопротивление теплопередаче ограждающих конструкций (Ro, м 2 - $^\circ$ C/Bt) определяется согласно Таблице 4, СНиП 23-02-2003 «Тепловая защита зданий», через градусо-сутки отопительного периода (ГСОП).

Градусо-сутки отопительного периода (ГСОП) D_d , °С. сут, для выбора требований к сопротивлению теплопередаче отдельных видов ограждающих конструкций и расчетов удельного расхода энергии на отопление здания следует определять по формуле

$$D_d = t_{int} - t_{ht} \cdot z_{ht}, \qquad (1.1)$$

где t_{in} — расчетная температура внутреннего воздуха, °С;

 t_{ht} — средняя температура отопительного периода, °C;

 z_{ht} — продолжительность отопительного периода, сут.

Расчетная температура внутреннего воздуха в жилых помещениях, °C, принимаемая согласно ГОСТ 30494-96 «Здания жилые и общественные. Параметры микроклимата в помещениях». В климатических условиях г. Новосибирска температура внутреннего воздуха для жилых зданий равна $t_{int} = +\ 21^{\circ}\text{C}$. В климатических условиях г. Новосибирска температура внутреннего воздуха для общественных помещений равна $t_{int} = +\ 18^{\circ}\text{C}$.

Средняя температура °С и продолжительность сут. отопительного периода, принимаемые согласно СНиП 23-01-99 «Строительная климатология». Для г. Новосибирска t_{ht} =-8,7 °C, z_{ht} = 230 сут.

Расчетную температуру наружного воздуха в холодный период года t_{ext} , °C, следует принимать равной средней температуре наиболее холодной пятидневки обеспеченностью 0,92 по СНиП 22-01-99. Для г. Новосибирска t_{ext} =-39 °C.

Влажностный режим помещений следует определять в соответствии с СНиП 23-02-2003 «Тепловая защита зданий». Для г. Новосибирска принимается — нормальный, условия эксплуатации ограждающих конструкций — сухая зона.

Расчетная относительная влажность внутреннего воздуха принимается согласно СНиП 23-02-2003 «Тепловая защита зданий» и составляет

- для жилых зданий $\phi = 55 \%$;
- для общественных помещений $\phi = 50 \%$.

Температура точки росы при данных нормируемых температурах и влажности в помещении составляет

- для общественных помещений 7,44 °C;
- для жилых помещений 11,62°C.

При данных климатических параметрах для г. Новосибирска ΓCOH

– для жилых помещений составляет по формуле (1.1)

$$D_d = (21 - (-8,7)) \cdot 230 = 6831 \, ^{\circ}\text{C} \cdot \text{cyt.}$$

– для общественных помещений составляет по формуле (1.1) $D_d = (18 \text{ -(-8,7)}) \cdot 230 = 6141 \text{ °C} \cdot \text{сут}.$

Требуемое сопротивление теплопередаче наружных стен в соответствии с Таблицей 4 СНиП 23-02-2003 «Тепловая защита зданий» для жилых помещений г. Новосибирска составляет

$$Ro^{TP} = 3.79 \text{ m}^2 \cdot {}^{\circ}\text{C/BT}$$

Требуемое сопротивление теплопередаче наружных стен в соответствии с Таблицей 4 СНиП 23-02-2003 «Тепловая защита зданий» для общественных помещений г. Новосибирска составляет

$$Ro^{TP} = 3.04 \text{ m}^2 \cdot {}^{\circ}\text{C/BT}$$

Требуемое сопротивление теплопередаче заполнений световых проемов в соответствии с Таблицей 4 СНиП 23-02-2003 «Тепловая защита зданий» для жилых помещений г. Новосибирска составляет

$$Ro^{TP} = 0.64 \text{ m}^2 \cdot {}^{\circ}\text{C/BT}$$

Требуемое сопротивление теплопередаче заполнений световых проемов в соответствии с Таблицей 4 СНиП 23-02-2003 «Тепловая защита зданий» для общественных помещений г. Новосибирска составляет

$$Ro^{TP} = 0.51 \text{ m}^2 \cdot {}^{\circ}\text{C/BT}$$

Сопротивление теплопередаче чердачного перекрытия при температуре в техническом этаже +16 °C в соответствии с Таблицей 4, Примечание 3 СНиП 23-02-2003 «Тепловая защита зданий» для жилых помещений г. Новосибирска составляет

$$Ro^{TP} = 0.41 \text{ m}^2 \cdot {}^{\circ}\text{C/BT}$$

Сопротивление теплопередаче покрытия пола 1-го этажа (температура в подвале +2 °C) в соответствии с Таблицей 4, Примечание 3 СНиП 23-02-2003 «Тепловая защита зданий» для общественных помещений г. Новосибирска составляет

$$Ro^{TP} = 1.14 \text{ M}^2 \cdot {}^{\circ}\text{C/BT}$$

Температура внутренней поверхности ограждающей конструкции (за исключением вертикальных светопрозрачных конструкций) в зоне теплопроводных включений (диафрагм, сквозных швов из раствора, стыков панелей, ребер, шпонок и гибких связей в многослойных панелях, жестких связей облегченной кладки и др.), в углах и оконных откосах, а также зенитных фонарей должна быть не ниже температуры точки росы внутреннего воздуха, при расчетной температуре наружного воздуха в холодный период года, п.5.9, СНиП 23-02-2003 «Тепловая защита зданий».

Температура внутренней поверхности конструктивных элементов остекления окон зданий (кроме производственных) должна

быть не ниже плюс 3 °C, а непрозрачных элементов окон — не ниже температуры точки росы при расчетной температуре наружного воздуха в холодный период года, для производственных зданий — не ниже 0 °C, п.5.10, СНиП 23-02-2003 «Тепловая защита зданий».

Определение границ дефектного участка при тепловизионной съемке определяется согласно ГОСТ 26629-85 «Здания и сооружения. Метод тепловизионного контроля качества теплоизоляции ограждающих конструкций».

В качестве границы дефектного участка ограждающей конструкции, выявленного при термографировании, принимают:

- изотерму, температура которой при расчетных условиях эксплуатации здания или сооружения равна температуре точки росы внутреннего воздуха;
- контур участка с однородным температурным полем, линейные размеры которого больше двух толщин ограждающей конструкции и относительное сопротивление теплопередаче равно или меньше его критического значения.

Участок с нарушенными теплозащитными свойствами выявляют при просмотре тепловых изображений наружной поверхности ограждающей конструкции. К ним относят участки, тепловое изображение которых не соответствует модели термограммы, и участки, значения выходных сигналов тепловизора от поверхности которых больше на цену деления шкалы изотерм, чем для базового участка.

1.4.Определение минимально допустимого перепада между наружным и внутренним воздухом

Для выполнения тепловизионной диагностики в разные периоды времени: зимний период времени или летний период времени, необходимо подбирать инфракрасные камеры с различной чувствительностью в соответствии с ГОСТ 26629-85 «Метод тепловизионного контроля качества теплоизоляции ограждающих конструкций», а также подбирать определенные метеоусловия для соответствия по минимально допустимому перепаду между наружным и внутренним воздухом, при котором возможно проводить тепловизионную съемку.

Тепловизионные измерения производят при перепаде температур между наружным и внутренним воздухом, превосходящим минимально допустимый перепад, определяемый по формуле

$$\Delta t_{\min} = \Theta \cdot R_0^n \cdot \frac{a \cdot r}{1 - r}; \qquad (1.2)$$

где Θ — предел температурной чувствительности тепловизора (для Testo 875-2і составляет 0,045), °C;

- R_0^n проектное значение сопротивления теплопередаче, $\mathbf{M}^2 \cdot {}^{\circ}\mathbf{C}/\mathbf{B}\mathbf{T}$;
- a коэффициент теплоотдачи, принимаемый равным: для внутренней поверхности стен по нормативно-технической документации 8,7 Вт/(м².°С); для наружной поверхности стен при скоростях ветра 1, 3, 6 м/с соответственно 11, 20, 30 Вт/(м².°С);
- r относительное сопротивление теплопередаче подлежащего выявлению дефектного участка ограждающей конструкции, принимаемое равным отношению значения требуемого нормативно-технической документации к проектному значению сопротивления теплопередаче, но не более 0,85.

Минимально допустимый перепад для выполнения тепловизионных измерений внутри здания с применением инфракрасной камеры «Testo 875-2i» составляет для жилой части здания: для наружных стен жилого здания $8,41\,^{\circ}\mathrm{C}$; для оконных блоков жилого здания $1,42\,^{\circ}\mathrm{C}$.

1.5.Методика проведения теплотехнического обследования наружных ограждающих

Выявление возможных теплотехнических дефектов наружных стен здания производится путем визуально-инструментальных обследований помещений. В современных зданиях при наличии множества помещений такие обследования требуют значительного времени и сопряжены с рядом не удобств.

Для определения участков стены с теплотехническим дефектами значительно эффективнее метод тепловизионного контроля качества теплоизоляции ограждающих конструкций по ГОСТ 26629-85. По обзорной термограмме наружной и внутренней поверхности стены не только определяются участки с повышенной теплоотдачей, но и температура наружной поверхности этих участков.

Согласно пп.3.2 и 3.3. ГОСТ 26629-85 тепловизионные измерения производятся при режиме теплопередачи, близком к стационарному. Закономерность стационарной теплопередачи является равенство тепловых потоков проходящих через внутреннюю и наружную поверхность ограждения, разделяющего среду с более

высокой температурой воздуха $t_{\text{н.эксп}}$, от внутренней среды с более низкой температурой $t_{\text{в эксп}}$, т. е. при стационарной теплопередачи сумма выходящего и входящего теплового потока равна нулю. В летний период времени замеры теплового потока, выполненные внутри помещения здания, будут иметь числовое значение со знаком минус (обратный тепловой поток — т. к. на улице температура воздуха и температура наружной поверхности более высокая, чем температура воздуха и температура внутренней поверхности внутри помещений здания, тепловой поток стремится через ограждающие конструкции в помещения здания с уличной стороны), в зимний период времени замеры теплового потока выполненные внутри помещения здания будут иметь числовое значение со знаком плюс (тепловой поток стремится через ограждающие конструкции из помещения здания в уличную сторону). закономерность представлена в п.5.14 СТО 00044807-001-2006 «Теплозащитные свойства ограждающих конструкций» и выражается равенством

 $q = \alpha_{\scriptscriptstyle B} \cdot (t_{\scriptscriptstyle B. 3 \text{КСП}} - \tau_{\scriptscriptstyle B. \text{Ср. 3 КСП}}) = \alpha_{\scriptscriptstyle H} \cdot (\tau_{\scriptscriptstyle H. \text{Ср. 3 КСП}} - t_{\scriptscriptstyle H. 3 \text{КСП}});$ (1.3) где $t_{\scriptscriptstyle B. 3 \text{КСП}}$ — фактически замеренная температура внутреннего воздуха, °C;

 $t_{\text{\tiny H.3KCH}}$ — фактически замеренная температура наружного воздуха, °C;

 $\alpha_{\scriptscriptstyle H}$ — коэффициент теплоотдачи наружной поверхности ограждающей конструкции;

 $\alpha_{\scriptscriptstyle B}$ — коэффициент теплоотдачи внутренней поверхности ограждающих конструкций, в соответствии с Таблицей 7, СНиП 23-02-2003, составляет 8,7 Вт/м²·°С;

 $\tau_{\text{в.ср. эксп}}$ — расчетная средняя температура наружной поверхности ограждающей конструкции, °C;

τ_{н.ср.эксп} — фактически замеренная средняя температура наружной поверхности ограждающей конструкции, °С.

Из равенства следует:
$$\tau_{\text{\tiny B,cp.эксп}} = t_{\text{\tiny B.9kcn}} + \frac{\alpha_{\text{\tiny H}}}{\alpha_{\text{\tiny R}}} \cdot (\tau_{\text{\tiny H,cp.эксп}} - t_{\text{\tiny H,9kcn}}).$$

Таким образом, в условиях стационарной теплопередачи (или близкой к ней) при измеренной температуре наружного и внутреннего воздуха, а так же температуры наружной поверхности ограждающей конструкции, возможно определение температуры внутренней поверхности ограждающей конструкции, при этом $\alpha_{\rm H}$ состоит из коэффициента отдачи теплоты излучением $\alpha_{\rm L}$ и коэффициента отдачи теплоты конвекцией $\alpha_{\rm K}$ с прилегающим воздухом

 $(\alpha_{\rm H} = \alpha_{\rm T} + \alpha_{\rm K})$. Наружная поверхность ограждения отдает теплоту излучением в окружающую среду (атмосфера, соседние здания, деревья и пр.) Коэффициент теплоотдачи излучением для наружной поверхности определяется по следующей формуле, основанной на законе Стефана-Больцмана

$$\alpha_{\rm II} = \frac{1}{\frac{1}{c_0} + \frac{1}{c_1} + \frac{1}{c_2}} \cdot \frac{\frac{(\tau_{\rm H.CD.9KC\Pi} + 273)}{100}^4 - \frac{(t_{\rm H.9KC\Pi} + 273)}{100}^4}{\tau_{\rm H.CD.9KC\Pi} - t_{\rm H.9KC\Pi}},$$
(1.4)

где С₁,С₂ — коэффициенты излучения поверхностей ограждающих конструкций;

Со — коэффициент излучения абсолютно черного тела, равный $5.67 \text{BT/(м}^2 \cdot \text{K}^4)$

Серые тела излучают меньше энергии, чем абсолютно черные. Их коэффициент излучения С (C_1 и C_2), $Bt/(M^2 \cdot K^4)$ может быть представлен в виде

$$C=C_0 \cdot \varepsilon, \tag{1.5}$$

где ε — степень черноты серого тела или относительный коэффициент излучения поверхности, определяемый, согласно Приложению 3 ГОСТ 26629-85.

Для ограждающей конструкции выполненной из облицовочного красного кирпича коэффициент излучения поверхности составляет C=5,22 B τ /($M^2 \cdot K^4$),

$$\varepsilon$$
 =0,92.

Для наружной поверхности ограждающих конструкций коэффициента отдачи теплоты конвекцией ак с прилегающим воздухом определяется по формуле Франка $\alpha_{\kappa}\!\!=\!\!7,\!34\!\cdot\!\upsilon^{0,\!656}\!\!+\!3,\!78\!\cdot\!e^{\text{-}1,\!9}\!\cdot\!\upsilon,$

$$\alpha_{\kappa} = 7,34 \cdot v^{0,656} + 3,78 \cdot e^{-1,9} \cdot v,$$
 (1.6)

где v — фактически измеренная скорость ветра, м/с;

e — основание натуральных логарифмов (e = 2,718)

Для пересчета фактически измеренных температур внутреннего и наружного воздуха, а также температур на внутренней поверхности ограждающих конструкций, полученных из выше перечисленной методике, на нормативные значения, т. е. температура внутреннего воздуха +21°C и наружного воздуха -39°C применяется методика рекомендованная в Приложении 7, ГОСТ 26254-84 «Методы определения сопротивления теплопередаче ограждающих конструкций».

Температуру внутренней поверхности ограждения при расчетных температурных условиях определяют по формуле

$$\tau_{\scriptscriptstyle B}^{\rm pacq} = t_{\scriptscriptstyle B} - (t_{\scriptscriptstyle B} - \tau_{\scriptscriptstyle B}) \cdot \frac{\alpha_{\scriptscriptstyle H}}{\alpha'}; \tag{1.7}$$

где $t_{\scriptscriptstyle B}$ — расчетная температура внутреннего воздуха, °C, принимаемая по ГОСТ30494-96 и нормам проектирования соответствующих зданий и сооружений;

 $\tau_{\scriptscriptstyle B}$ — температура внутренней поверхности ограждения при $t_{\scriptscriptstyle B}$ — $t_{\scriptscriptstyle H}$ без учета изменения коэффициента теплоотдачи $a_{\scriptscriptstyle 6}$, определяемая по формуле

$$\tau_{\rm B} = t_{\rm B} - (t_{\rm B}^{\rm 9KC\Pi} - \tau_{\rm H}^{\rm 9KC\Pi}) \cdot \frac{t_{\rm B} - t_{\rm H}}{t_{\rm 9KC\Pi}^{\rm 9KC\Pi} - t_{\rm 9KC\Pi}},$$
(1.8)

 $a_{\scriptscriptstyle 6} = a_{\scriptscriptstyle K} + a_{\scriptscriptstyle 7}$ — коэффициент теплоотдачи внутренней поверхности ограждения в эксперименте, BT/(м².°C);

$$a_{\rm g} = a'_{\rm K} + a'_{\rm A}$$
 — то же, при $t_{\rm B}$ и $\tau_{\rm B}$, ${\rm BT/(M^2 \cdot ^{\circ}C)}$;

 a_{κ} , a'_{π} — коэффициенты конвективного теплообмена внутренней поверхности стен. Для потолков полученное значение a_{κ} умножают на 1,3, а для полов умножают на 0,7;

 a_n , a'_n — коэффициенты лучистого теплообмена внутренней поверхности ограждения;

 $t_{\rm \scriptscriptstyle R}^{\scriptscriptstyle \rm 3KC\Pi}$ — фактически замеренная температура внутреннего воздуха, °C;

 $t_{\rm H}^{
m _{SKCII}}$ — фактически замеренная температура наружного воздуха, °C;

 $au_{\text{в.ср.эксп}}$ — расчетная средняя температура наружной поверхности ограждающей конструкции, °C

 $t_{\rm H}$ — расчетная температура наружного воздуха, в соответствии с СНиП 23-01-99, °C.

Передача теплоты излучением к внутренней поверхности ограждения происходит от поверхностей внутренних конструкций (перегородок, потолка, пола и пр.), имеющих температуру более высокую, чем температура внутренней поверхности ограждения. Коэффициент теплоотдачи излучением для внутренней поверхности a_{π} и a'_{π} определяется по следующей формуле, основанной на законе Стефана-Больцмана

$$\alpha_{II} = \frac{1}{\frac{1}{c_0} + \frac{1}{c_1} + \frac{1}{c_2}} \cdot \frac{\frac{(t_{+273})^4}{100} - \frac{(\tau_{+273})^4}{100}}{t - \tau}, \tag{1.9}$$

где C_1 и C_2 — коэффициенты излучения поверхностей ограждающих конструкций;

 C_{o} — коэффициент излучения абсолютно черного тела, равный 5,67 Bt/(м $^{2}\cdot$ K 4);

Серые тела излучают меньше энергии, чем абсолютно черные. Их коэффициент излучения С (C_1 и C_2), $Bt/(M^2 \cdot K^4)$ может быть представлен в виде

$$C = Co \cdot \varepsilon$$
, (1.10)

где ε — степень черноты серого тела или относительный коэффициент излучения поверхности, определяемый, согласно Приложению 3 ГОСТ 26629-85.

Для ограждающей конструкции оштукатуренной цементнопесчаным раствором коэффициент излучения поверхности составляет $C = 5,22 \text{ BT/}(\text{M}^2 \cdot \text{K}^4)$, e = 0.92.

Для вертикальных поверхностей (внутренних поверхностей наружных стен) в отапливаемых помещениях В. Н. Богословским предложено определять a_{κ} и a'_{κ} по формуле

$$a_{\kappa} = 1,66 \cdot \Delta t^{1/3}$$
; (1.11)

где Δt — температурный перепад между температурой воздуха и поверхности, °C, т. е. $\Delta t = t_{\rm B} - \tau$ и $\Delta t = t_{\rm B}^{\rm 3KCH} - \tau_{\rm B, CD}^{\rm pacq}$.

1.6. Натурные испытания наружных ограждающих конструкций здания

1.6.1. Натурные испытания наружных стен здания

Натурные испытания фрагментов наружных стен здания проводились в октябре 2019 г. на основании методических рекомендаций по комплексному теплотехническому обследованию наружных ограждающих конструкций, с применением тепловизионной техники МДС 23-1.2007.

Выбранные участки наружных стен здания, для фактического измерения сопротивления теплопередачи в реперных точках, ориентированы на север или северо-восток, имеют поверхностный слой из одного материала, одинаковой обработки и состояния поверхности, имеют одинаковые условия по лучистому теплообмену и не находиться в непосредственной близости от элементов, которые могут изменить направление и значение тепловых потоков.

Измерение температуры и плотности тепловых потоков проводились с внутренней и наружной сторон ограждающих конструкций. Измерение температуры наружного и внутреннего воздуха проводились на расстоянии 10 см от поверхности выбранных участков наружных стен здания.

Тепловизионное обследование проводилось при нормативнодопустимом перепаде наружного и внутреннего воздуха. Обследование проводилось при наружной температуре, близкой к среднесуточной. Тепловизионное обследование проводилось при отсутствии атмосферных осадков, тумана, смога и задымленность. Обследуемые поверхности не подвергались в процессе измерений воздействию прямого и отраженного солнечного облучения, а также отопительных приборов. Тепловизионное обследование проводилось в период времени, когда проводились измерение и регистрация температуры и тепловых потоков в реперной зоне.

Средние значения теплофизических величин за расчетный период исследований наружных стен приведены в *Таблице* 1.1.

1.6.2. Натурные испытания светопрозрачных конструкций

Натурные испытания фрагментов светопрозрачных конструкций здания проводились в октябре 2019 г. на основании методических рекомендаций по комплексному теплотехническому обследованию наружных ограждающих конструкций, с применением тепловизионной техники МДС 23-1.2007*.

Выбранные фрагменты светопрозрачных конструкций здания, для фактического измерения сопротивления теплопередачи в реперных точках, ориентированы на север или северо-восток, имеют поверхностный слой из одного материала, одинаковой обработки и состояния поверхности, имеют одинаковые условия по лучистому теплообмену и не находиться в непосредственной близости от элементов, которые могут изменить направление и значение тепловых потоков.

Измерение температуры и плотности тепловых потоков проводились с внутренней и наружной сторон светопрозрачной конструкций. Измерение температуры наружного и внутреннего воздуха проводились на расстоянии 10 см от поверхности выбранных фрагментов светопрозрачных конструкций здания.

Тепловизионное обследование проводилось при устойчивой работе системы отопления. Обследование проводилось при наружной температуре, близкой к среднесуточной. Тепловизионное обследование проводилось при отсутствии атмосферных осадков, тумана, смога и задымленность. Обследуемые поверхности не подвергались в процессе измерений воздействию прямого и отраженного

солнечного облучения, а также отопительных приборов. Тепловизионное обследование проводилось в период времени, когда проводились измерение и регистрация температуры и тепловых потоков в реперной зоне.

Средние значения теплофизических величин за расчетный период исследований светопрозрачных конструкций приведены в *Таблице* 1.2.

1.6.3. Натурные испытания утепления чердачного перекрытия

Натурные испытания фрагментов утепления чердачного перекрытия здания проводились в октябре 2019 г. на основании методических рекомендаций по комплексному теплотехническому обследованию наружных ограждающих конструкций, с применением тепловизионной техники МДС 23-1.2007.

Выбранные фрагменты утепления чердачного перекрытия здания, для фактического измерения сопротивления теплопередачи в реперных точках, имеют поверхностный слой из одного материала, одинаковой обработки и состояния поверхности, имеют одинаковые условия по лучистому теплообмену и не находиться в непосредственной близости от элементов, которые могут изменить направление и значение тепловых потоков.

Измерение температуры и плотности тепловых потоков проводились с внутренней стороны чердачного перекрытия. Тепловизионное обследование проводилось при устойчивой работе системы отопления. Обследование проводилось при наружной температуре, близкой к среднесуточной. Тепловизионное обследование проводилось при отсутствии атмосферных осадков, тумана, смога и задымленность. Обследуемые поверхности не подвергались в процессе измерений воздействию прямого и отраженного солнечного облучения, а также отопительных приборов. Тепловизионное обследование проводилось в период времени, когда проводились измерение и регистрация температуры и тепловых потоков в реперной зоне.

Средние значения теплофизических величин за расчетный период исследований утепления чердачного перекрытия здания приведены в Taблицe~1.3.

Результаты расчетов фактического сопротивления теплопередаче утепления чердачного перекрытия здания приведены в *Таблице* 1.4.

1.6.4. Натурные испытания покрытия пола 1-го этажа

Натурные испытания фрагментов покрытия пола 1-го этажа здания проводились в октябре 2019 г. на основании методических рекомендаций по комплексному теплотехническому обследованию наружных ограждающих конструкций, с применением тепловизионной техники МДС 23-1.2007.

Выбранные фрагменты покрытия пола 1-го этажа здания, для фактического измерения сопротивления теплопередачи в реперных точках, имеют поверхностный слой из одного материала, одинаковой обработки и состояния поверхности, имеют одинаковые условия по лучистому теплообмену и не находиться в непосредственной близости от элементов, которые могут изменить направление и значение тепловых потоков.

Измерение температуры и плотности тепловых потоков проводились с внутренней стороны покрытия пола 1-го этажа. Тепловизионное обследование проводилось при устойчивой работе системы отопления. Обследование проводилось при наружной температуре, близкой к среднесуточной. Тепловизионное обследование проводилось при отсутствии атмосферных осадков, тумана, смога и задымленность. Обследуемые поверхности не подвергались в процессе измерений воздействию прямого и отраженного солнечного облучения, а также отопительных приборов. Тепловизионное обследование проводилось в период времени, когда проводились измерение и регистрация температуры и тепловых потоков в реперной зоне.

Средние значения теплофизических величин за расчетный период исследований покрытия пола 1-го этажа здания приведены в *Таблице* 1.5.

Результаты расчетов фактического сопротивления теплопередаче покрытия пола 1-го этажа здания приведены в *Таблице* 1.6.

1.7.Тепловизионная съемка наружных ограждающих конструкций

Тепловизионные видеоизображения, полученные в невидимом человеческому глазу тепловом диапазоне (инфракрасном диапазоне волн), позволяют без соприкосновения с объектом получать

Конец ознакомительного фрагмента. Приобрести книгу можно в интернет-магазине «Электронный универс» e-Univers.ru