ПРЕДИСЛОВИЕ

Свет, звук и волны – очень знакомые нам явления. Как будет рассказано в этой книге, свет и звук также относятся к волновым явлениям, поэтому, чтобы хорошо понять природу света и звука, нужно прежде всего разобраться с основными свойствами волн. Однако понятие «волна» известно своей сложностью, потому что довольно трудно правильно представить ее движение. Не так просто понять, как расходящиеся в пространстве волны меняются с течением времени. Наоборот, если удастся получить правильное представление о движении волн, то само собой получится понять и их свойства.

В этом как раз и состоит задача манги. Как я уже говорил в предисловии к манге «Разбираемся с помощью манги. Физика (механика)», манга – это уникальный инструмент, позволяющий живо представить, как менялось то или иное явление с течением времени. И такое сложное явление, как волна, с помощью манги объяснить проще, чем в учебнике или в видеоуроках.

В данной книге манга чередуется с текстовыми разъяснениями, но, используя разные приемы, например повторяя самые важные моменты, мы постарались сделать так, чтобы, читая только разделы с мангой, можно было получить полное представление о волнах на уровне физики в старших классах. Попробуйте прочитать данную мангу несколько раз, пока нужная информация не отложится в голове. В книге также попадаются некоторые формулы, но если вам они покажутся слишком сложными, то можете просто продолжить чтение, пропуская их. В любом случае я бы хотел, чтобы вы перечитывали эту книгу, так как при повторении материала вы понемногу начинаете понимать неясные поначалу места.

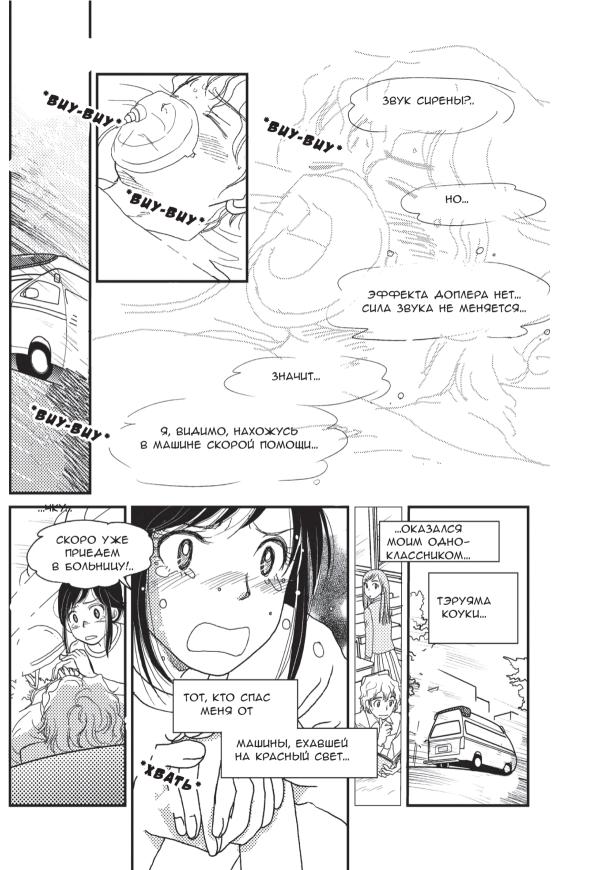
Разделы с текстовыми разъяснениями ориентированы на тех, кто хочет попрактиковаться в теме или узнать о ней побольше. Информация в разделе «Дополнительный материал» дается на базовом уровне физики в старших классах школы, в то время как в разделах «Дополнительный материал. Повышенный уровень» и «Дополнительный материал. Экспертный уровень» информация ориентирована на старшеклассников научно-технических школ и студентов. Особенно сложным является раздел «Дополнительный материал. Экспертный уровень», где используется дифференциальное исчисление. Чтобы разобраться в движении волн, из уравнения выводится волновая функция, и в то же время определяется скорость волны, для чего необходимо хорошее знание математики. Если вам интересны такие процессы, обязательно прочитайте раздел «Дополнительный материал. Экспертный уровень».

В завершение я хочу выразить благодарность художнице Фукамори Аки, которая проделала такую трудную работу, как представление в манге теории света, звука и волн. Кроме того, выражаю благодарность компаниям Trend Pro и Ohmsha за подготовку, редактирование и публикацию данной книги.

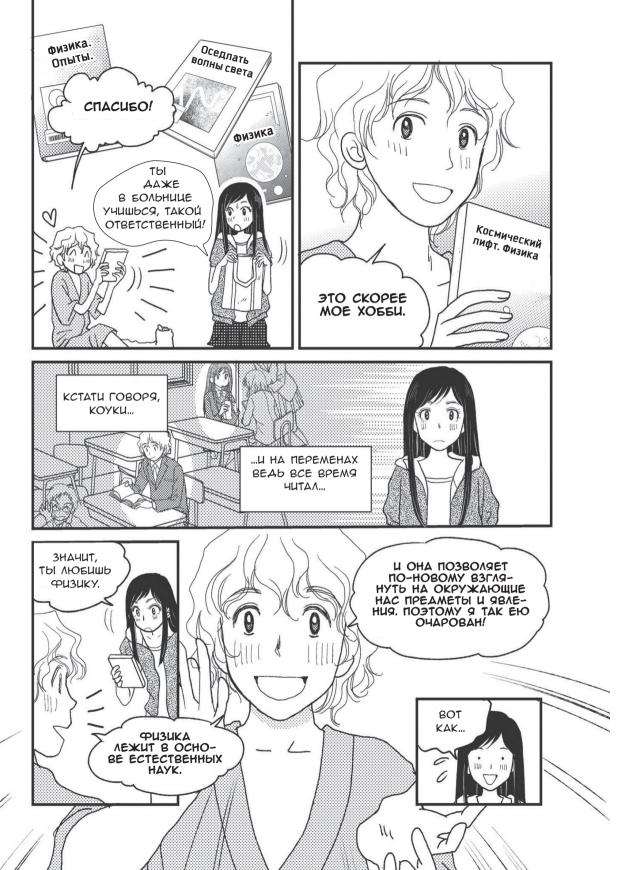
Октябрь 2015 года Нитта Хидео

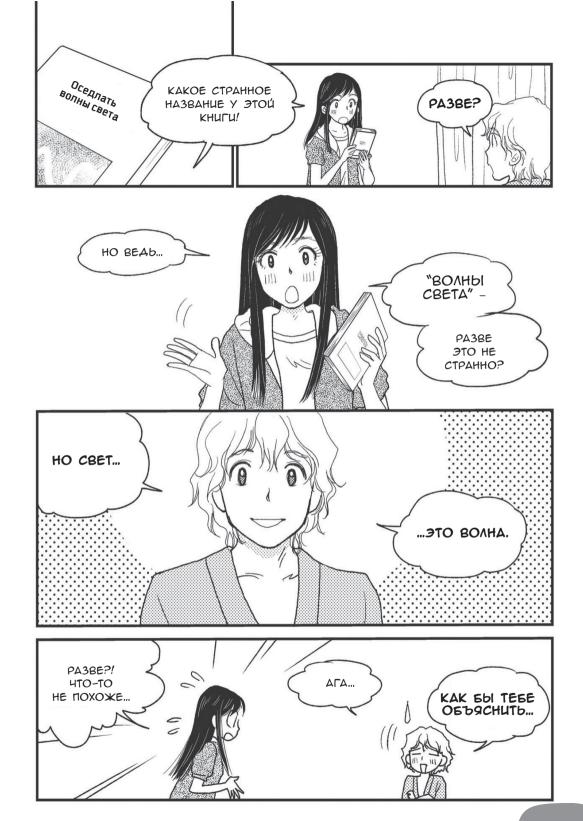
COAEPWAHUE

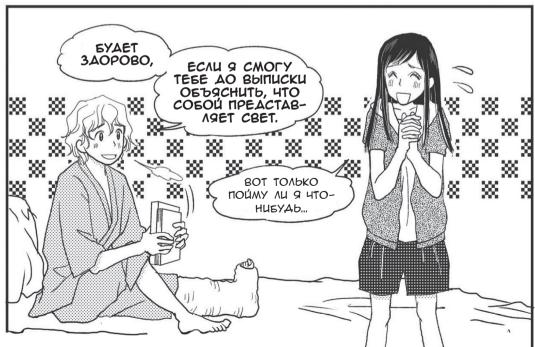
Τ	Гролог	1
Γ.	лава 1. <i>C</i> BET	9
	Свет и его отражение	
-	Лабораторная работа. Твое отражение в зеркале	
	Поглощение света. Прозрачность и непрозрачность	
2	Преломление света	
	Линзы	
	Лабораторная работа. Действительное	
	изображение, созданное выпуклой линзой	28
4	Дисперсия света и цвета	
	Дополнительный материал	
	История исследования света	
	Причины рассеяния света	
	Поглощение света. Прозрачность и непрозрачность	
	Тепло солнечного света	35
	Закон отражения	35
	Отражение наружного света от окна	36
	Скорость света и показатель преломления	
	Закон преломления	
	Формула линзы	
	Дисперсия света	41
	Дополнительный материал. Повышенный уровень	
	Как получается радуга?	42
Γ.	лава 2. ВОЛНЫ	45
1		
2	Суперпозиция волн	
	Дополнительный материал	
	Взаимосвязь между графиками	
	«координата-смещение» и «время-смещение»	76
	Отражение волны	77
	Дополнительный материал. Повышенный уровень	
	Уравнение движения	79
	Колебания	
	Простые колебания и функция синуса	81
	Уравнение и график синусоидальной волны	
	Нормальные волны	85


Дополнительный материал. Экспертный уров Дифференциальное уравнение движения Уравнение движения и простые колебания Волновое уравнение	
Волновое уравнение для поперечной волны	
Скорость продольной волны и модуль Юнга	
Решение волнового уравнения	
Принцип суперпозиции и волновое уравнение	
Развивающая задача	
Глава З. ЗВУК	97
1 Звуковые волны. Основы	99
2 Как распространяется звуковая волна?	
Лабораторная работа . Графики	
«время-смещение» для разных	
музыкальных инструментов	
3 Нормальная волна звука и биение	
Лабораторная работа. Биения	
Дополнительный материал	
Колебания воздуха в воздушном столбе	134
Скорость звука	137
Скорость поперечной волны, издаваемой струн	
Гамма	137
Дополнительный материал. Повышенный урове	НЬ
Уравнение скорости звука	
Тембр и суперпозиция звуковой волны	
Компенсация свободного конца	
Дополнительный материал. Экспертный уровен	
Волновое уравнение для звуковой волны	143
Выведение формулы скорости звука	
Связь между смещением газа и изменением плотности	1/17
плотности	
Глава 4. ЭФФЕКТ ДОПЛЕРА	149
1 Как слышится звук, если источник звука движется	151
Лабораторная работа . Формула эффекта Доплера	
для движущегося источника звука	
 Звук, воспринимаемый при движении наблюдател 	าя
Лабораторная работа. Формула эффекта Доплера	,
KOLUU UBIAMATCA HUUUNUTA UP	163

	Дополнительный материал	
	Эффект Доплера для случая, когда движутся	
	и источник звука, и наблюдатель	
	Принцип работы измерителя скорости	171
	Дополнительный материал. Повышенный уровень	
	Эффект Доплера при диагональном направлении	174
	Эффект Доплера для света	
	Ударная волна	176
٦	лава 5. СВЕТОВАЯ ВОЛНА	. 179
1	Интерференция и дифракция волны	181
	Лабораторная работа. Формула, описывающая области	
	взаимного усиления и взаимного ослабления волн	187
2	Частицы и волны	
	Лабораторная работа. Дифракционная решетка	
	и интерференция	201
3	Всюду волны	
	Дополнительный материал	
	Энергия и интенсивность волны	211
	В какой среде передаются электромагнитные волны?	
	Дополнительный материал. Повышенный уровень	
	Сферические волны	212
	Интерференция сферических волн	
	Корпускулярная и волновая природа	
	Дополнительный материал. Экспертный уровень	
	Уравнение энергии волны	215
	Энергия синусоидальной волны	216
	Приложение А. Единицы измерения	
	Основные и производные единицы измерения	
	Обозначения и названия значений, кратных 10	
	Децибелы	
	Приложение В. Математическая справка	
	Решение задачи со стр. 95	
П	Гредметный указатель	. 226
- '	· · · · · · · · · · · · · · · · · · ·	

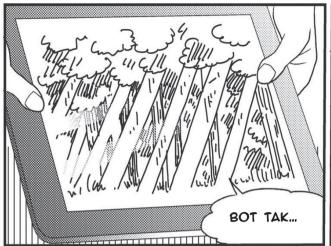


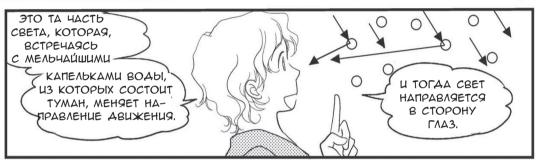




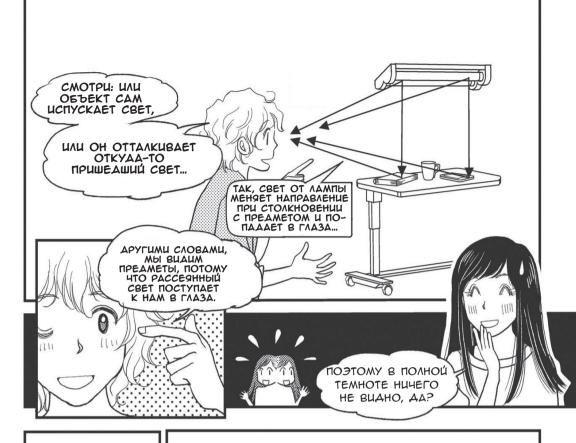
1. Свет и его отражение

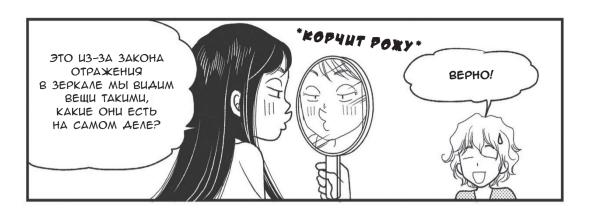
ПРИШЛА,

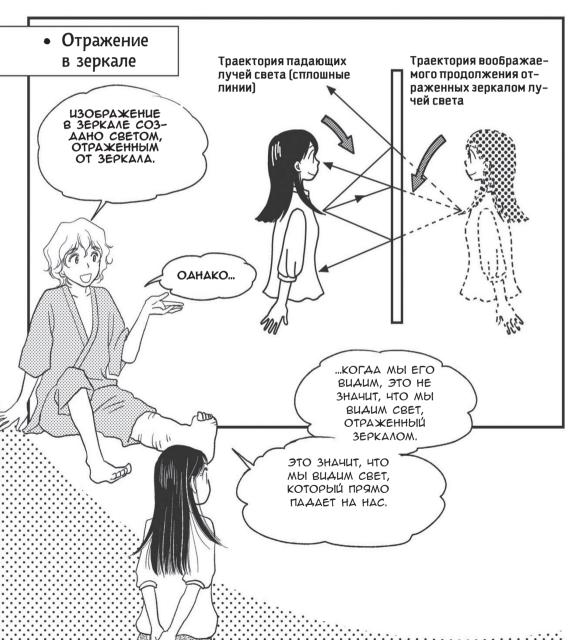

AA?



AOBONDHO

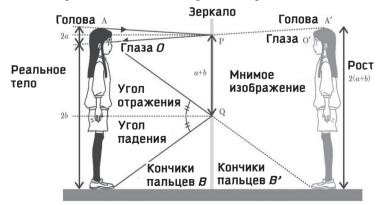






Лабораторная работа. Твое отражение в зеркале

Решим такую задачу, касающуюся отражения в зеркале. Предположим, что на стене висят три зеркала разной высоты. Какой высоты должно быть зеркало, чтобы отразить тебя целиком?


- Бо́льшей высоты, чем ты.
- Такой же высоты, как ты.
- Высоты в половину твоего роста.

Конечно, 1 или 2. Ведь чтобы отразить меня целиком, зеркало должно быть по высоте как минимум с мой рост, разве нет?

А вот и нет! Достаточно высоты и в половину твоего роста! Так что правильным будет ответ 3. Если нарисовать траекторию света, который идет от ног и, отражаясь от зеркала, приходит к глазам, то получится подобие линии BQO на рисунке ниже. В глазах человека свет выглядит идущим прямолинейно. Поэтому будет казаться, что свет идет по линии BQO. Поэтому и в зеркале высотой в половину твоего роста можно будет увидеть свое отражение до ступней ног. Это верно, и если ты стоишь рядом с зеркалом, и если стоишь далеко.

Кстати говоря, весь отраженный зеркалом свет, подобно идущему от ног свету, кажется нам идущим прямолинейно с той стороны зеркала, потому что глаза человека не могут различить идущий от источника свет и отраженный свет. Это нужно просто понять.

Конец ознакомительного фрагмента. Приобрести книгу можно в интернет-магазине «Электронный универс» e-Univers.ru