Содержание

	Задания	Ответь
Введение	. 6	
Некоторые формулы и обозначения	. 7	
1. Формальные вычисления.		
Типовые расчёты по химическим уравнениям	. 10	
1.1. Расчёты с использованием «количества вещества»	. 10	
Задачи для упражнений	. 13	137
1.2. Расчёты по химическим уравнениям	. 14	
Логика решения расчётных задач по химии	. 15	
Задачи для самостоятельного решения	. 16	134
1.3. Решение задач «на чистое вещество» и «избыток-недостаток»	. 22	
Задачи для самостоятельного решения	. 29	141
1.4. Решение задач «на выход продукта реакции»	. 38	
Задачи для самостоятельного решения	. 43	142
2. Строение атома. Периодическая система химических элементов		
Д.И. Менделеева	. 52	146
3. Химическая связь и строение вещества	. 64	165
4. Окислительно-восстановительные процессы в химии	. 68	172
5. Классификация неорганических веществ	. 79	187
6. Основные классы химических соединений	. 85	192
7. Теория электролитической диссоциации. Ионные уравнения.		
Гидролиз	. 96	202
8. Классификация химических реакций	. 109	217
9. Скорость химических реакций	. 112	219
10. Химическое равновесие	. 114	221

11. Расчёты	116	226
11.1. Вычисление массы растворённого вещества, содержащегося в определённой массе раствора с известной массовой долей; вычисление массовой доли вещества в растворе	116	231
11.2. Расчёты объёмных отношений газов при химических реакциях. Тепловой эффект химической реакции. Термохимические уравнения. Расчёты теплового эффекта реакции	121	227
11.3. Расчёты массы вещества или объёма газов по известному количеству вещества, массе или объёму одного из участвующих в реакции веществ	127	231
Литература	236	

Введение

Дорогие ученики!

Пособие, которое вы держите в руках, поможет вам успешно изучить химию в школе и качественно подготовиться к ЕГЭ.

Это не решебник, составленный для выполнения домашних заданий по какому-либо из школьных учебников. Материал в пособии изложен в соответствии с логикой изучения химии, а приобретённые знания и навыки могут пригодиться на разных этапах обучения. Например, умение решать задачи, составлять уравнения реакций и пользоваться Периодической системой Д.И. Менделеева нужны с восьмого класса по одиннадцатый.

Как пользоваться книгой?

До выполнения заданий будет полезно прочитать школьный учебник или другие пособия, в частности Большой или Карманный справочник по химии издательства «Легион» под ред. В. Н. Доронькина. После этого приступайте к выполнению заданий. В каждом разделе пособия много упражнений. К ним приведены подробные решения. Посмотрите примеры 9-13 (с. 14-17), задачу 1.2.1 на с. 18 и её решение (с. 138) или задачу 3.1 (условие на с. 64 и решение на с. 168).

Каждый раздел содержит достаточно много заданий, поэтому прочные знания и устойчивые навыки вам обеспечены. Количество выполняемых упражнений по каждому разделу вы определите самостоятельно в зависимости от успешности освоения учебного материала.

Если какое-то задание вы выполнить не сможете, прочитайте ещё раз теорию и посмотрите образцы решений. Если вы ошиблись, постарайтесь найти ошибку самостоятельно. Если не получится, вновь обратитесь к теории, примерам или попросите помощи у учителя, одноклассников, родителей.

Надеемся, что наша книга поможет вам, во-первых, научиться работать самостоятельно и, во-вторых, добиться высоких результатов в изучении химии.

Успехов вам!

Уважаемые учителя и методисты!

Наше пособие представляет собой сборник тренировочных упражнений для формирования устойчивых навыков выполнения заданий базового и повышенного уровней сложности по химии. Оно поможет вам в организации непрерывного процесса овладения знаниями, формирования умений учащихся, в выявлении имеющихся у них пробелов и проведении необходимого тренинга, в закреплении и обобщении изученного.

Пособие составлено в соответствии с требованиями стандарта образования по химии и соответствует уровню сложности заданий, которые проверяются при государственной итоговой аттестации учащихся по химии.

Тетрадь содержит 11 глав, построенных по принципу парного подобия и от простого — к сложному. С целью оказания помощи учащимся приводится подробное решение всех заданий.

Большое количество упражнений по всем разделам позволит добиться выработки устойчивых навыков, а также использовать их для тематического и текущего контроля.

Надеемся, что тренировочная тетрадь по общей химии поможет вам в организации эффективного процесса обучения.

Замечания и предложения, касающиеся данной книги, можно присылать на электронный адрес: legionrus@legionrus.com.

Некоторые формулы и обозначения*

А. Основные формулы, связанные с понятием «моль»:

Формула	Обозначения
$n = rac{N_{_{B^{ ext{-}B}a}}}{N_{A}}$	$\begin{array}{c} n-\text{количество вещества [моль]} \\ N_{_{\text{B-Ba}}}-\text{число структурных единиц вещества (молекул, атомов и др.)} \\ N_{_{\text{A}}}-\text{число структурных единиц в 1 моль вещества (число Авогадро)} \\ N_{_{\text{A}}}=6,02\cdot10^{23}\text{моль}^{-1} \end{array}$
$n = \frac{m_{_{\text{B-Ba}}}}{M_{_{\text{B-Ba}}}}$	$egin{align*} n & —$ количество вещества [моль] $m_{_{ extbf{B-Ba}}} & —$ масса вещества [г] $M_{_{ extbf{B-Ba}}} & —$ молярная масса вещества [г/моль]
$n_r = \frac{V_r}{V_M}$	$n_{_{ m r}}$ — количество газообразного вещества [моль] $V_{_{ m r}}$ — объём газообразного вещества [л] $V_{_{ m M}}$ — молярный объём газообразного вещества [л/моль], $V_{_{ m M}}=22,4$ л/моль при н. у. (н. у. обозначает нормальные условия, т. е. $T=273~{ m K},~p=1$ атм. $=760~{ m mm}$ ртутного столба $=101,325~{ m k}\Pi$ а)

Б. Формулы, которые применяются при вычислениях содержания какого-либо компонента в соединении или смеси, растворе:

Формула	Обозначения
$\omega = rac{m_{_{ m части}}}{m_{_{ m Bcero of pas ua}}}$	ω — массовая доля (часть, процент) $m_{_{\mathrm{части}}}$ — масса какой-либо части образца (вещества в смеси или растворе, каких-либо атомов в молекуле сложного вещества и т.п.) $m_{_{\mathrm{всего образца}}}$ — масса всего образца (смеси, раствора, молекулы сложного вещества и т.д.)

^{*} Правила номенклатуры IUPAC (International Union of Pure and Applied Chemistry — Международный союз теоретической и прикладной химии) допускают использовать для обозначения количества вещества как «n», так и «v», отдавая предпочтение первому.

Формула	Обозначения
$\omega_{_{ extbf{B} ext{-Ba}}} = rac{m_{_{ extbf{B} ext{-Ba}}}}{m_{_{ extbf{p} ext{-pa}}}}$ или $\omega_{_{ extbf{B} ext{-Ba}},\%} = rac{m_{_{ extbf{B} ext{-Ba}}}}{m_{_{ extbf{p} ext{-pa}}}} \cdot 100\%$	$\omega_{_{ extbf{B} ext{-Ba}}}$ или $\omega_{_{ extbf{B} ext{-Ba}},\%}$ — массовая доля вещества в растворе (или смеси), выраженная в долях единицы или в процентах* $m_{_{ extbf{B} ext{-Ba}}}$ и $m_{_{ extbf{D} ext{-pa}}}$ — масса растворённого вещества и масса раствора (смеси), выраженные в одинаковых единицах измерения [г, кг и др.]
$C_{M} = \frac{n}{V_{p \text{-pa}(\pi)}}$	$egin{align*} \mathbf{C}_{\mathrm{M}} & \mbox{— молярная концентрация вещества [моль/л]} \\ \mathbf{n} & \mbox{— количество вещества [моль]} \\ \mathbf{V}_{\mathrm{p-pa(n)}} & \mbox{— объём раствора, выраженный в литрах!} \\ \end{gathered}$
$\rho = \frac{m}{V}$	ho — плотность вещества [г/мл, г/см³, кг/л, кг/дм³ и др.] m и V — масса вещества и его объём, выраженные в единицах, соответствующих размерности плотности [г и мл, г и см³, кг и л, кг и дм³ и др.]

В. Формулы, используемые при вычислении практического выхода реакции по отношению к теоретическим расчётам:

Формула	Обозначения
$\begin{aligned} \eta &= m_{_{\Pi \mathrm{pakT}}}/m_{_{\mathrm{Teop}}} \\ \eta &= V_{_{\Pi \mathrm{pakT}}}/V_{_{\mathrm{Teop}}} \\ \eta &= n_{_{\Pi \mathrm{pakT}}}/n_{_{\mathrm{Teop}}} \end{aligned}$	η — выход реакции по отношению к теоретическому $m_{\rm практ}$, $V_{\rm практ}$ и $n_{\rm практ}$ — соответственно масса, объём или количество вещества, которое было практически получено в результате осуществления процесса (реакции) $m_{\rm теор}$, $V_{\rm теор}$ и $n_{\rm теор}$ — соответственно масса, объём или количество вещества, которое было вычислено по уравнению реакции

Г. Формулы, применяемые для расчётов с газообразными веществами:

Формула	Обозначения
a) $\mathbf{D}_{1/2} = \mathbf{M}_1/\mathbf{M}_2$ б) при $\mathbf{V}_1 = \mathbf{V}_2$ $\mathbf{D}_{1/2} = \mathbf{m}_1/\mathbf{m}_2$	${f D}_{1/2}$ — относительная плотность первого газа по отношению ко второму ${f M}_1$ и ${f M}_2$ — молярные массы веществ ${f m}_1$ и ${f m}_2$ — массы газов

$$\omega = m_{_{\text{B-B}a}} / m_{_{\text{p-pa}}},$$

переходя от процентов к долям единицы при записи условия — это уменьшает вероятность ошибки в расчётах.

^{*} Мы советуем при проведении расчётов использовать формулу

Д. Формулы, полученные преобразованием или объединением некоторых из приведённых формул, которые очень полезны при решении задач:

Формула	Обозначения
$\mathbf{m}_{\mathbf{B}-\mathbf{B}\mathbf{a}} = \boldsymbol{\omega}_{\mathbf{B}-\mathbf{B}\mathbf{a}} \mathbf{m}_{\mathbf{p}-\mathbf{p}\mathbf{a}}$	— вычисление массы вещества в смеси по массовой доле вещества и массе смеси
$\mathbf{m}_{_{\mathbf{B}\text{-}\mathbf{B}\mathbf{a}}} = \boldsymbol{\omega}_{_{\mathbf{B}\text{-}\mathbf{B}\mathbf{a}}} \rho \ \mathbf{V}_{\mathbf{p}\text{-}\mathbf{p}\mathbf{a}}$	— вычисление массы вещества, находящегося в растворе, по массовой доле вещества, плотности и объёму раствора
$n = \frac{\omega_{_{\text{B-Ba}}} m_{_{\text{p-pa}}}}{M_{_{\text{B-Ba}}}}$	— вычисление количества вещества, находящегося в сме- си (растворе), по массовой доле вещества, массе раствора и молярной массе вещества
$n = \frac{\omega_{_{\text{B-Ba}}} \rho V_{_{\text{p-pa}}}}{M_{_{\text{B-Ba}}}}$	— вычисление количества вещества, находящегося в растворе, по массовой доле вещества, плотности и объёму раствора и молярной массе вещества

1

Формальные вычисления. Типовые расчёты по химическим уравнениям

В этом разделе рассматриваются:

- 1) формальные расчёты с использованием понятия «количество вещества» вычисление молярной массы вещества по его формуле, вычисление количества вещества по его массе или объёму газообразных веществ и наоборот;
- 2) логика проведения расчётов по уравнению реакции;
- 3) приёмы решения основных типов расчётных задач («чистое вещество», «примеси», «избыток-недостаток», «выход продукта»).

Упражнения, приводимые ниже, составлены для неорганических веществ. Аналогичные задачи с участием органических веществ приводятся в главах, посвящённых свойствам конкретных классов органических соединений; такое разделение материала поможет вам проверить — научились ли вы решать задачи.

1.1. Расчёты с использованием «количества вещества»

Пример 1. Вычислить молярную массу сульфата натрия.

extstyle ex

Молярная масса вещества численно равна относительной молекулярной массе M_r , которая складывается из атомных масс элементов, образующих это вещество:

$$M(Na_2SO_4) = [A_r(Na) \cdot 2 + A_r(S) \cdot 1 + A_r(O) \cdot 4] =$$

= $(23 \cdot 2 + 32 + 16 \cdot 4) = 142$ г/моль.

Пример 2. Какое количество вещества содержится в 9,8 г серной кислоты?

Дано:
$$m(H_2SO_4) = 9.8 \ \Gamma$$

 $v(H_2SO_4) - ?$ Количество вещества $v(n)$ вычисляется по уравнению
 $v = m_{_{B-Ba}}/M_{_{B-Ba}}$, где
 $m_{_{B-Ba}} - macca$ вещества (Γ)
 $m_{_{B-Ba}} - macca$ вещества (Γ)

Пример 3. Какую массу имеет карбонат калия количеством вещества 0,2 моль?

$$\begin{array}{c|c} \underline{\underline{\Pi}_{\text{ано:}}} \\ \nu(\text{K}_2\text{CO}_3) = 0,2 \text{ моль} \\ \text{m}(\text{K}_2\text{CO}_3) - ? \end{array} \middle| \begin{array}{c} \nu = m_{_{\text{B-Ba}}}/M_{_{\text{B-Ba}}} \\ m_{_{\text{B-Ba}}} = \nu \cdot M_{_{\text{B-Ba}}} \end{array}$$

Возможны два варианта оформления решения этого задания.

1)
$$M(K_2CO_3)=39\cdot 2+12+16\cdot 3=138\ г/моль$$
 $m(K_2CO_3)=0,2\ r\cdot 138\ r/моль=27,6\ r$ 2) $m(K_2CO_3)=0,2\cdot (39\cdot 2+12+16\cdot 3)=0,2\cdot 138=27,6\ r$.

Пример 4. Какое количество вещества содержится в 224 л азота при нормальных условиях?

$$\begin{array}{c|c} \underline{\underline{\mathrm{Дано:}}} & \underline{V(N_2) = 224 \ \mathrm{л}} & v_{\mathrm{ras}} = V_{\mathrm{r}}/V_{\mathrm{M}}, \, \mathrm{гдe} \\ \underline{V(N_2) = 224 \ \mathrm{л}} & V_{\mathrm{r}} - \mathrm{oбъём} \, \mathrm{газa} \, \mathrm{при} \, \mathrm{н.\, y.} \\ \underline{V(N_2) = 224/22, 4 = 10} & v_{\mathrm{M}} - \mathrm{молярный} \, \mathrm{oбъём} \, \mathrm{газa}, \, V_{\mathrm{M}} = 22, 4 \, \mathrm{л/моль} \, \mathrm{(при} \, \mathrm{н.\, y.)} \\ \end{array}$$

Пример 5. Какой объём занимают 0,2 моль кислорода при нормальных условиях?

$$\begin{array}{c|c} \underline{\text{Дано:}} \\ \nu(O_2) = 0.2 \text{ моль} \\ \underline{V(O_2) - ?} \\ \hline V(O_2) = 0.2 \cdot 22.4 = 4.48 \text{ л.} \end{array}$$

Пример 6. Какова масса 2,24 л углекислого газа при нормальных условиях?

$$\frac{\text{Дано:}}{\text{V(CO}_2) = 2,24} \, \pi \, (\text{н. y.}) \\ \text{m(CO}_2) = ?$$

Для проведения объёмно-весовых расчётов используют уравнение (1), связывающее массу вещества с количеством вещества, и уравнение (2), связывающее объём газа с его количеством:

$$v = m_{_{B-Ba}}/M_{_{B-Ba}}$$
 (1)
 $v_{_{Pa3}} = V_{_{P}}/V_{_{M}}$ (2)

- 1) По уравнению (2) $\nu(\text{CO}_2) = 2.24/22.4 = 0.1$ моль
- 2) По уравнению (1) $m(CO_2) = 0, 1 \cdot (12 + 16 \cdot 2) = 0, 1 \cdot 44 = 4, 4 \text{ г.}$

Пример 7. Сколько молекул содержится в 6,3 г азотной кислоты?

$$_{\rm MAHO:}$$
 m(HNO₃) = 6,3 г v(HNO₃) — ?

Для решения задачи используем уравнения, связывающие массу вещества с его количеством (1) и количество вещества с числом частиц в веществе (2):

$$u = m_{_{\mathrm{B}\text{-Ba}}}/M_{_{\mathrm{B}\text{-Ba}}}$$
 (1) $u = N_{_{\mathrm{частиц}}}/N_{_{\mathrm{A}}}$ (2), где $N_{_{\mathrm{A}}} = 6.02 \cdot 10^{23} \, \mathrm{моль}^{-1}$ 1) По уравнению (1)

 $\nu(\mathrm{HNO_3}) = 6.3/(1+14+16\cdot3) = 6.3/63 = 0.1$ моль 2) По уравнению (2)

$$egin{align*} \mathbf{N}_{_{ ext{Vactum}}} &= \mathbf{v} \cdot \mathbf{N}_{_{\mathbf{A}}} \\ \mathbf{N}_{_{ ext{MOMERYM}}} &= \mathbf{0.1 \cdot 6.02 \cdot 10^{\,23}} = \mathbf{0.602 \cdot 10^{\,23}} \ \mathrm{молекул.} \end{aligned}$$

Пример 8. Рассчитайте относительную плотность оксида азота(III) по кислороду.

Дано:
$$N_2O_3$$

 $D_{N_2O_3/O_2}$ Относительная плотность одного вещества по другому вычисляется по формуле $D_{1/2} = M_1/M_2$, где
 M_1 — молярная масса первого вещества
 $M(N_2O_3) = 14 \cdot 2 + 16 \cdot 3 = 76$ г/моль
 M_2 — молярная масса второго вещества
 $M(O_2) = 16 \cdot 2 = 32$ г/моль $D_{N_2O_3/O_3} = 76/32 = 2,375$.

Конец ознакомительного фрагмента. Приобрести книгу можно в интернет-магазине «Электронный универс» e-Univers.ru