Аннотация
Глубокое обучение — это вид машинного обучения, наделяющий компьютеры способностью учиться на опыте и понимать мир в терминах иерархии концепций. Поскольку компьютер приобретает знания из опыта, отпадает нужда в человеке-операторе, который формально описывает необходимые компьютеру знания. Иерархическая организация позволяет компьютеру обучаться сложным концепциям, конструируя их из более простых; граф такой иерархии может содержать много уровней. В этой книге читатель найдет широкий обзор тем, изучаемых в глубоком обучении.
Книга содержит математические и концептуальные основы линейной алгебры, теории вероятностей и теории информации, численных расчетов и машинного обучения в том объеме, который необходим для понимания материала. Описываются приемы глубокого обучения, применяемые на практике, в том числе глубокие сети прямого распространения, регуляризация, алгоритмы оптимизации, сверточные сети, моделирование последовательностей, и др. Рассматриваются такие приложения, как обработка естественных языков, распознавание речи, компьютерное зрение, онлайновые рекомендательные системы, биоинформатика и видеоигры. Наконец, описываются перспективные направления исследований: линейные факторные модели, автокодировщики, обучение представлений, структурные вероятностные модели, методы Монте-Карло, статистическая сумма, приближенный вывод и глубокие порождающие модели.
Издание будет полезно студентами и аспирантам, а также опытным программистам, которые хотели бы применить глубокое обучение в составе своих продуктов или платформ.
Книга содержит математические и концептуальные основы линейной алгебры, теории вероятностей и теории информации, численных расчетов и машинного обучения в том объеме, который необходим для понимания материала. Описываются приемы глубокого обучения, применяемые на практике, в том числе глубокие сети прямого распространения, регуляризация, алгоритмы оптимизации, сверточные сети, моделирование последовательностей, и др. Рассматриваются такие приложения, как обработка естественных языков, распознавание речи, компьютерное зрение, онлайновые рекомендательные системы, биоинформатика и видеоигры. Наконец, описываются перспективные направления исследований: линейные факторные модели, автокодировщики, обучение представлений, структурные вероятностные модели, методы Монте-Карло, статистическая сумма, приближенный вывод и глубокие порождающие модели.
Издание будет полезно студентами и аспирантам, а также опытным программистам, которые хотели бы применить глубокое обучение в составе своих продуктов или платформ.
Характеристики
Издано
|
Издательство «ДМК Пресс» |
Формат(ы)
|
|
Перевод
|
с англ. |
Возрастное ограничение
|
Нет |
Вид издания
|
Учебное издание |
Ознакомительный фрагмент
Открыть/скачать фрагмент
430,4 кб
Отзывы