760 руб.
950 руб.
-20%
Экономия 190 руб.
После оплаты издание можно скачать во всех доступных форматах на странице Мои книги
Аннотация
Автор книги повествует о примечательной формуле Эйлера для многогранников, прослеживая ее историю от древнегреческой геометрии до совсем недавних исследований, а также о многообразном ее влиянии на топологию — науку об изучении формы.
В 1750 году Эйлер заметил, что любой многогранник, имеющий V вершин, E ребер и F граней, удовлетворяет соотношению V — E + F = 2. Из книги вы узнаете, что греки совсем не заметили эту формулу, что Декарт был в шаге от ее открытия, что математики XIX века обобщили ее в направлениях, о которых Эйлер и не подозревал, а в XX веке было доказано, что у любого тела есть своя формула Эйлера. На тщательно подобранных примерах представлены многие элегантные и неожиданные применения этой формулы, например: почему на Земле всегда существует точка, где нет ветра, как измерить площадь лесного участка, посчитав деревья на нем, и сколько разноцветных карандашей необходимо для раскрашивания любой карты.
Издание предназначено для широкого круга любителей математики.
В 1750 году Эйлер заметил, что любой многогранник, имеющий V вершин, E ребер и F граней, удовлетворяет соотношению V — E + F = 2. Из книги вы узнаете, что греки совсем не заметили эту формулу, что Декарт был в шаге от ее открытия, что математики XIX века обобщили ее в направлениях, о которых Эйлер и не подозревал, а в XX веке было доказано, что у любого тела есть своя формула Эйлера. На тщательно подобранных примерах представлены многие элегантные и неожиданные применения этой формулы, например: почему на Земле всегда существует точка, где нет ветра, как измерить площадь лесного участка, посчитав деревья на нем, и сколько разноцветных карандашей необходимо для раскрашивания любой карты.
Издание предназначено для широкого круга любителей математики.
Характеристики
Издано
|
Издательство «ДМК Пресс» |
Формат(ы)
|
|
Перевод
|
с англ. |
Переводчик(и)
|
А.А. Слинкин |
Возрастное ограничение
|
Нет |
Вид издания
|
Научно-популярное издание |
Ознакомительный фрагмент
Открыть/скачать фрагмент
539,3 кб
Отзывы